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Input, Output, and Display

Learn how to input, output and display data and signals with Communications
System Toolbox™.

• “Signal Terminology” on page 1-2

• “Export Data to MATLAB” on page 1-3

• “Sources and Sinks” on page 1-8

• “Read Signals From Hardware Devices” on page 1-27



1 Input, Output, and Display

Signal Terminology
This section defines important Communications System Toolbox terms related
to matrices, vectors, and scalars, as well as frame-based and sample-based
processing.

Matrices, Vectors, and Scalars
This document uses the unqualified words scalar and vector in ways that
emphasize a signal’s number of elements, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a
one-dimensional array with one element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The
signal could be a one-dimensional array, a matrix that has exactly one
column, or a matrix that has exactly one row. The number of elements in a
vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish
among different types of scalar signals or different types of vector signals,
this document mentions the distinctions explicitly. For example, the terms
one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and
columns the matrix has. The orientation of a two-dimensional vector is its
status as either a row vector or column vector. A one-dimensional array has
no orientation – this is sometimes called an unoriented vector.

A matrix signal that has more than one row and more than one column is
called a full matrix signal.
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Export Data to MATLAB

In this section...

“Use a Signal To Workspace Block” on page 1-3

“Configure the Signal To Workspace Block” on page 1-4

“View the Error Rate Data in the Workspace” on page 1-4

“Send Signal and Error Data to the Workspace” on page 1-5

“View the Signal and Error Data in the Workspace” on page 1-6

“Analyze Signal and Error Data” on page 1-7

Use a Signal To Workspace Block
This section explains how to send data from a Simulink® model to the
MATLAB® workspace so you can analyze the results of simulations in greater
detail.

You can use a Signal To Workspace block, from the Signal Processing Sinks
library of the DSP System Toolbox™ application to send data to the MATLAB
workspace as a vector. For example, you can send the error rate data from the
Hamming code model, described in the section “Reduce the Error Rate Using
a Hamming Code” on page 3-86. To insert a Signal to Workspace block into
the model, follow these steps:

1 Type doc_hamming at the MATLAB Help browser to open the model.

2 Drag a Signal To Workspace block, from the Signal Processing Sinks
library, into the model window and connect it as shown in the following
figure.

1-3
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Hamming Code Model with a Signal To Workspace Block

Configure the Signal To Workspace Block
To configure the Signal to Workspace block, follow these steps:

1 Double-click the block to display its dialog box.

2 Type hammcode_BER in the Variable name field.

3 Type 1 in the Limit data points to last field. This limits the output vector
to the values at the final time step of the simulation.

4 Click OK.

When you run a simulation, the model sends the output of the Error Rate
Calculation block to the workspace as a vector of size 3, called hamming_BER.
The entries of this vector are the same as those shown by the Error Rate
Display block.

View the Error Rate Data in the Workspace
After running a simulation, you can view the output of the Signal to
Workspace block by typing the following commands at the MATLAB prompt:

format short e
hammcode_BER

The vector output is the following:

hammcode_BER =
5.4066e-003 1.0000e+002 1.8496e+004

1-4
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The command format short e displays the entries of the vector in
exponential form. The entries are as follows:

• The first entry is the error rate.

• The second entry is the total number of errors.

• The third entry is the total number of comparisons made.

Send Signal and Error Data to the Workspace
To analyze the error-correction performance of the Hamming code, send the
transmitted signal, the received signal, and the error vectors, created by the
Binary Symmetric Channel block, to the workspace. An example of this is
shown in the following figure.

Send Signal and Error Data to the Workspace

1 To open the model shown in the previous figure, type doc_channel at
the MATLAB command line.

2 Double-click the Binary Symmetric Channel block to open its dialog box,
and select Output error vector. This creates an output port for the
error data.

3 Drag three Signal To Workspace blocks, from the Signal Processing Sinks
library, into the model window and connect them as shown in the preceding
figure.

4 Double-click the left Signal To Workspace block.
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• Type Tx in the Variable name field in the block’s dialog box. The block
sends the transmitted signal to the workspace as an array called Tx.

• In the Frames field, select Log frames separately (3-D array). This
preserves each frame as a separate column of the array Tx.

• Click OK.

5 Double-click the middle Signal To Workspace block:

• Type errors in the Variable name field.

• In the Frames field, select Log frames separately (3-D array).

• Click OK.

6 Double-click the right Signal To Workspace block:

• Type Rx in the Variable name field.

• In the Frames field, select Log frames separately (3-D array).

• Click OK.

View the Signal and Error Data in the Workspace
After running a simulation, you can display individual frames of data. For
example, to display the tenth frame of Tx, at the MATLAB prompt type

Tx(:,:,10)

This returns a column vector of length 4, corresponding to the length of a
message word. Usually, you should not type Tx by itself, because this displays
the entire transmitted signal, which is very large.

To display the corresponding frame of errors, type

errors(:,:,10)

This returns a column vector of length 7, corresponding to the length of
a codeword.

To display frames 1 through 5 of the transmitted signal, type

Tx(:,:,1:5)
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Analyze Signal and Error Data
You can use MATLAB to analyze the data from a simulation. For example, to
identify the differences between the transmitted and received signals, type

diffs = Tx~=Rx;

The vector diffs is the XOR of the vectors Tx and Rx. A 1 in diffs indicates
that Tx and Rx differ at that position.

You can determine the indices of frames corresponding to message words that
are incorrectly decoded with the following MATLAB command:

error_indices = find(diffs);

A 1 in the vector not_equal indicates that there is at least one difference
between the corresponding frame of Tx and Rx. The vector error_indices
records the indices where Tx and Rx differ. To view the first incorrectly
decoded word, type

Tx(:,:,error_indices(1))

To view the corresponding frame of errors, type

errors(:,:,error_indices(1))

Analyze this data to determine the error patterns that lead to incorrect
decoding.
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Sources and Sinks
Communications System Toolbox provides sinks and display devices that
facilitate analysis of communication system performance. You can implement
devices using either System objects, blocks, or functions.

In this section...

“Data sources” on page 1-8

“Noise Sources” on page 1-11

“Sequence Generators” on page 1-13

“Scopes” on page 1-15

“View a Sinusoid” on page 1-17

“View a Modulated Signal” on page 1-19

Data sources
You can use blocks or functions to generate random data to simulate a signal
source. In addition, you can use Simulink blocks such as the Random Number
block as a data source. You can open the Random Data Sources sublibrary
by double-clicking its icon (found in the Comm Sources library of the main
Communications System Toolbox block library).

Random Symbols
The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you
specify. A special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries
are independently chosen and uniformly distributed in the set {1,3,5}. (Your
results might vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])

a =

3 5 1 5
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1 5 3 3
1 3 3 1
1 1 3 5
3 1 1 3

If you want 1 to be twice as likely to occur as either 3 or 5, use the command
below to prescribe the skewed distribution. The third input argument has two
rows, one of which indicates the possible values of b and the other indicates
the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

b =

3 3 5 1
1 1 1 1
1 5 1 1
1 3 1 3
3 1 3 1

Random Integers
In MATLAB, the randint function generates random integer matrices whose
entries are in a range that you specify. A special case generates random
binary matrices.

For example, the command below generates a 5-by-4 matrix containing
random integers between 2 and 10.

c = randint(5,4,[2,10])

c =

2 4 4 6
4 5 10 5
9 7 10 8
5 5 2 3

10 3 4 10
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If your desired range is [0,10] instead of [2,10], you can use either of the
commands below. They produce different numerical results, but use the same
distribution.

d = randint(5,4,[0,10]);
e = randint(5,4,11);

In Simulink, the Random Integer Generator and Poisson Integer Generator
blocks both generate vectors containing random nonnegative integers. The
Random Integer Generator block uses a uniform distribution on a bounded
range that you specify in the block mask. The Poisson Integer Generator
block uses a Poisson distribution to determine its output. In particular, the
output can include any nonnegative integer.

Random Bit Error Patterns
In MATLAB, the randerr function generates matrices whose entries are
either 0 or 1. However, its options are different from those of randint,
because randerr is meant for testing error-control coding. For example, the
command below generates a 5-by-4 binary matrix, where each row contains
exactly one 1.

f = randerr(5,4)

f =

0 0 1 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0

You might use such a command to perturb a binary code that consists of five
four-bit codewords. Adding the random matrix f to your code matrix (modulo
2) introduces exactly one error into each codeword.

On the other hand, to perturb each codeword by introducing one error with
probability 0.4 and two errors with probability 0.6, use the command below
instead.

% Each row has one '1' with probability 0.4, otherwise two '1's
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g = randerr(5,4,[1,2; 0.4,0.6])

g =

0 1 1 0
0 1 0 0
0 0 1 1
1 0 1 0
0 1 1 0

Note The probability matrix that is the third argument of randerr affects
only the number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element
column vector using any of the commands below. The three commands
produce different numerical outputs, but use the same distribution. The
third input arguments vary according to each function’s particular way of
specifying its behavior.

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1.
binarymatrix2 = randint(100,1,2); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1

In Simulink, the Bernoulli Binary Generator block generates random bits and
is suitable for representing sources. The block considers each element of
the signal to be an independent Bernoulli random variable. Also, different
elements need not be identically distributed.

Noise Sources
Blocks in the Noise Generators sublibrary of the Comm Sources library
generate random data to simulate channel noise. You can use blocks in the
Noise Generators sublibrary to generate random real numbers, depending on
what distribution you want to use. The choices are listed in the following table.
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Random Noise Generators
Blocks in the Noise Generators sublibrary of the Comm Sources library
generate random data to simulate channel noise. You can use blocks in the
Noise Generators sublibrary to generate random real numbers, depending on
what distribution you want to use. The choices are listed in the following table.

Distribution Block

Gaussian Gaussian Noise Generator

Rayleigh Rayleigh Noise Generator

Rician Rician Noise Generator

Uniform on a bounded interval Uniform Noise Generator

You can open the Noise Generators sublibrary by double-clicking its icon in
the main Communications System Toolbox block library.

Gaussian Noise Generator
In MATLAB, the wgn function generates random matrices using a white
Gaussian noise distribution. You specify the power of the noise in either dBW
(decibels relative to a watt), dBm, or linear units. You can generate either
real or complex noise.

For example, the command below generates a column vector of length 50
containing real white Gaussian noise whose power is 2 dBW. The function
assumes that the load impedance is 1 ohm.

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a
load of 60 ohms, use either of the commands below. The ordering of the string
inputs does not matter.

y2 = wgn(50,1,2,60,'complex','linear');
y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the
awgn function. See “AWGN Channel” on page 4-2 for more information.
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In Simulink, you use the Gaussian Noise Generator block to add Gaussian
noise to a communications model.

Sequence Generators
You can use blocks in the Sequence Generators sublibrary of the
Communications Sources library to generate sequences for spreading or
synchronization in a communication system. You can open the Sequence
Generators sublibrary by double-clicking its icon in the main Communications
System Toolbox block library.

Blocks in the Sequence Generators sublibrary generate

• Pseudorandom sequences

• Synchronization codes

• Orthogonal codes

Pseudorandom Sequences
The following table lists the blocks that generate pseudorandom or
pseudonoise (PN) sequences. The applications of these sequences range
from multiple-access spread spectrum communication systems to ranging,
synchronization, and data scrambling.

Sequence Block

Gold sequences Gold Sequence Generator

Kasami sequences Kasami Sequence Generator

PN sequences PN Sequence Generator

All three blocks use shift registers to generate pseudorandom sequences. The
following is a schematic diagram of a typical shift register.
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All r registers in the generator update their values at each time step according
to the value of the incoming arrow to the shift register. The adders perform
addition modulo 2. The shift register can be described by a binary polynomial
in z, grz

r + gr-1z
r-1 + ... + g0. The coefficient gi is 1 if there is a connection from

the ith shift register to the adder, and 0 otherwise.

The Kasami Sequence Generator block and the PN Sequence Generator block
use this polynomial description for their Generator polynomial parameter,
while the Gold Sequence Generator block uses it for the Preferred
polynomial [1] and Preferred polynomial [2] parameters.

The lower half of the preceding diagram shows how the output sequence can
be shifted by a positive integer d, by delaying the output for d units of time.
This is accomplished by a single connection along the dth arrow in the lower
half of the diagram.
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Synchronization Codes
The Barker Code Generator block generates Barker codes to perform
synchronization. Barker codes are subsets of PN sequences. They are short
codes, with a length at most 13, which are low-correlation sidelobes. A
correlation sidelobe is the correlation of a codeword with a time-shifted
version of itself.

Orthogonal Codes
Orthogonal codes are used for spreading to benefit from their perfect
correlation properties. When used in multi-user spread spectrum systems,
where the receiver is perfectly synchronized with the transmitter, the
despreading operation is ideal.

Code Block

Hadamard codes Hadamard Code Generator

OVSF codes OVSF Code Generator

Walsh codes Walsh Code Generator

Scopes
The Sinks block library contains scopes for viewing three types of signal plots:

• “Eye Diagrams” on page 1-16

• “Scatter Plots” on page 1-16

• “Signal Trajectories” on page 1-16

The following table lists the scope blocks and the plots they generate.

Block Name Plots

Discrete-Time Eye Diagram Scope Eye diagram of a discrete signal

Discrete-Time Scatter Plot Scope Scatter plot of a discrete signal

Discrete-Time Signal Trajectory
Scope

Signal trajectory of a discrete signal
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Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects
of intersymbol interference and other channel impairments in digital
transmission. When this software product constructs an eye diagram, it plots
the received signal against time on a fixed-interval axis. At the end of the
fixed interval, it wraps around to the beginning of the time axis. As a result,
the diagram consists of many overlapping curves. One way to use an eye
diagram is to look for the place where the eye is most widely opened, and
use that point as the decision point when demapping a demodulated signal
to recover a digital message.

The Discrete-Time Eye Diagram Scope block produces eye diagrams. This
block processes discrete-time signals and periodically draws a line to indicate
a decision, according to a mask parameter.

Examples appear in “View a Sinusoid” on page 1-17 and “View a Modulated
Signal” on page 1-19.

Scatter Plots
A scatter plot of a signal plots the signal’s value at its decision points. In the
best case, the decision points should be at times when the eye of the signal’s
eye diagram is the most widely open.

The Discrete-Time Scatter Plot Scope block produces scatter plots from
discrete-time signals. An example appears in “View a Sinusoid” on page 1-17.

Signal Trajectories
A signal trajectory is a continuous plot of a signal over time. A signal
trajectory differs from a scatter plot in that the latter displays points on the
signal trajectory at discrete intervals of time.

The Discrete-Time Signal Trajectory Scope block produces signal trajectories.
Unlike the Discrete-Time Scatter Plot Scope block, which displays points on
the trajectory at discrete time intervals corresponding to the decision points,
the Discrete-Time Signal Trajectory Scope displays a continuous picture of
the signal’s trajectory between decision points.
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View a Sinusoid
The following model produces a scatter plot and an eye diagram from a
complex sinusoidal signal. Because the decision time interval is almost,
but not exactly, an integer multiple of the period of the sinusoid, the eye
diagram exhibits drift over time. More specifically, successive traces in the
eye diagram and successive points in the scatter diagram are near each other
but do not overlap.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the Signal Processing Sources library (not the Sine Wave
block in the Simulink Sources library)

- Set Frequency to .502.

- Set Output complexity to Complex.

- Set Sample time to 1/16.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- On the Plotting Properties panel, set Samples per symbol to 16.

- On the Figure Properties panel, set Scope position to
figposition([2.5 55 35 35]);.

• Discrete-Time Eye Diagram Scope, in the Comm Sinks library
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- On the Plotting Properties panel, set Samples per symbol to 16.

- On the Figure Properties panel, set Scope position to
figposition([42.5 55 35 35]);.

Connect the blocks as shown in the preceding figure. From the model
window’s Simulation menu, choose Configuration parameters; in the
Configuration Parameters dialog box, set Stop time to 250. Running the
model produces the following scatter diagram plot.

The points of the scatter plot lie on a circle of radius 1. Note that the points
fade as time passes. This is because the box next to Color fading is checked
under Rendering Properties, which causes the scope to render points more
dimly the more time that passes after they are plotted. If you clear this box,
you see a full circle of points.

If you add the Discrete-Time Signal Trajectory Scope block to the model, it
displays a circular trajectory.

In the eye diagram, the upper set of traces represents the real part of the
signal and the lower set of traces represents the imaginary part of the signal.
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View a Modulated Signal
This multipart example creates an eye diagram, scatter plot, and signal
trajector plot for a modulated signal. It examines the plots one by one in
these sections:

• “Eye Diagram of a Modulated Signal” on page 1-19

• “Scatter Plot of a Modulated Signal” on page 1-23

• “Signal Trajectory of a Modulated Signal” on page 1-24

Eye Diagram of a Modulated Signal
The following model modulates a random signal using QPSK, filters the signal
with a raised cosine filter, and creates an eye diagram from the filtered signal.
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To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure the following blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 4.

- Set Sample time to to 0.01.

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of
the Modulation library of Communications System Toolbox, with default
parameters

• AWGN Channel, in the Channels library of Communications System
Toolbox, with the following changes to the default parameter settings:

- Set Mode to Signal-to-noise ratio (SNR).

- Set SNR (dB) to 15.

• Raised Cosine Transmit Filter, in the Comm Filters library

- Set Filter type to Normal.

- Set Group delay to 3.

- Set Rolloff factor to 0.5.

- Set Input processing to Elements as channels (sample based).

- Set Upsampling factor to 8.

• Discrete-Time Eye Diagram Scope, in the Comms Sinks library

- Set Samples per symbol to 8.

- Set Symbols per trace to 3. This specifies the number of symbols that
are displayed in each trace of the eye diagram. A trace is any one of the
individual lines in the eye diagram.
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- Set Traces displayed to 3.

- Set New traces per display to 1. This specifies the number of new
traces that appear each time the diagram is refreshed. The number of
traces that remain in the diagram from one refresh to the next is Traces
displayed minus New traces per display.

- On the Rendering Properties panel, setMarkers to + to indicate the
points plotted at each sample. The default value of Markers is empty,
which indicates no marker.

- On the Figure Properties panel, set Eye diagram to display to
In-phase only.

When you run the model, the Discrete-Time Eye Diagram Scope displays the
following diagram. Your exact image varies depending on when you pause or
stop the simulation.

Three traces are displayed. Traces 2 and 3 are faded because the Color
fading check box under Rendering Properties is selected. This causes
traces to be displayed less brightly the older they are. In this picture, Trace
1 is the most recent and Trace 3 is the oldest. Because New traces per
display is set to 1, only Trace 1 is appearing for the first time. Traces 2 and 3
also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and
because Samples per trace is set to 8, each symbol contains eight samples.
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Note that trace 1 contains 24 points, which is the product of Symbols per
trace and Samples per symbol. However, traces 2 and 3 contain 25 points
each. The last point in trace 2, at the right border of the scope, represents
the same sample as the first point in trace 1, at the left border of the scope.
Similarly, the last point in trace 3 represents the same sample as the first
point in trace 2. These duplicate points indicate where the traces would meet
if they were displayed side by side, as illustrated in the following picture.

You can view a more realistic eye diagram by changing the value of Traces
displayed to 40 and clearing the Markers field.

When the Offset parameter is set to 0, the plotting starts at the center of the
first symbol, so that the open part of the eye diagram is in the middle of the
plot for most points.
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Scatter Plot of a Modulated Signal
The following model creates a scatter plot of the same signal considered in
“Eye Diagram of a Modulated Signal” on page 1-19.

To build the model, follow the instructions in “Eye Diagram of a Modulated
Signal” on page 1-19 but replace the Discrete-Time Eye Diagram block with
the following block:

• Discrete-Time Scatter Plot Scope, in the Comms Sinks library

- Set Samples per symbol to 2.

- Set Offset to 0. This specifies the number of samples to skip before
plotting the first point.

- Set Points displayed to 40.

- Set New points per display to 10. This specifies the number of new
points that appear each time the diagram is refreshed. The number of
points that remain in the diagram from one refresh to the next is Points
displayed minus New points per display.

When you run the simulation, the Discrete-Time Scatter Plot Scope block
displays the following plot.
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The plot displays 30 points. Because the Color fading check box under
Rendering Properties is selected, points are displayed less brightly the
older they are.

Signal Trajectory of a Modulated Signal
The following model creates a signal trajectory plot of the same signal
considered in “Eye Diagram of a Modulated Signal” on page 1-19.

To build the model, follow the instructions in “Eye Diagram of a Modulated
Signal” on page 1-19 but replace the Discrete-Time Eye Diagram block with
the following block:

• Discrete-Time Signal Trajectory Scope, in the Comms Sinks library
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- Set Samples per symbol to 8.

- Set Symbols displayed to 40. This specifies the number of symbols
displayed in the signal trajectory. The total number of points displayed
is the product of Samples per symbol and Symbols displayed.

- Set New symbols per display to 10. This specifies the number of new
symbols that appear each time the diagram is refreshed. The number
of symbols that remain in the diagram from one refresh to the next is
Symbols displayed minus New symbols per display.

When you run the model, the Discrete-Time Signal Trajectory Scope displays
a trajectory like the one below.

The plot displays 40 symbols. Because the Color fading check box under
Rendering Properties is selected, symbols are displayed less brightly the
older they are.

See “Scatter Plot of a Modulated Signal” on page 1-23 to compare the
preceding signal trajectory to the scatter plot of the same signal. The
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Discrete-Time Signal Trajectory Scope block connects the points displayed by
the Discrete-Time Scatter Plot Scope block to display the signal trajectory.

If you increase Symbols displayed to 100, the model produces a signal
trajectory like the one below. The total number of points displayed at any
instant is 800, which is the product of the parameters Samples per symbol
and Symbols displayed.
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Read Signals From Hardware Devices
Communications System Toolbox software can read signal from external
hardware devices, such as the USRP2 Transmitter and USRP2 Receiver
blocks.
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Matrices, Vectors, and Scalars
Simulink supports matrix signals, one-dimensional arrays, sample-based
processing, and frame-based processing. This section describes how
Communications System Toolbox processes certain kinds of matrices and
signals.

This documentation uses the unqualified words scalar and vector in ways that
emphasize a signal’s number of elements, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a
one-dimensional array with one element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The
signal could be a one-dimensional array, a matrix that has exactly one
column, or a matrix that has exactly one row. The number of elements in a
vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish
among different types of scalar signals or different types of vector signals,
this document mentions the distinctions explicitly. For example, the terms
one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and
columns the matrix has. The orientation of a two-dimensional vector is its
status as either a row vector or column vector. A one-dimensional array has
no orientation – this is sometimes called an unoriented vector.

A matrix signal that has more than one row and more than one column is
called a full matrix signal.

Processing Rules
The following rules indicate how the blocks in the Communications System
Toolbox process scalar, vector, and matrix signals.

• In their numerical computations, blocks that process scalars do not
distinguish between one-dimensional scalars and one-by-one matrices. If
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the block produces a scalar output from a scalar input, the block preserves
dimension.

• For vector input signals:

- The numerical computations do not distinguish between one-dimensional
arrays and M-by-1 matrices.

- Most blocks do not process row vectors and do not support multichannel
functionality.

- The block output preserves dimension and orientation.

- The block treats elements of the input vector as a collection that arises
naturally from the block’s operation (for example, a collection of symbols
that jointly represent a codeword) or as successive samples from a single
time series.

• Most blocks do not process matrix signals that have more than one row
and more than one column. For blocks that do, a signal in the shape of
an N-by-M matrix represents a series of N successive samples from M
channels. An Input processing parameter on the block determines
whether each element or column of the input signal is a channel.

• Some blocks, such as the digital baseband modulation blocks, can produce
multiple output values for each value of a scalar input signal. A Rate
options parameter on the block determines if the additional samples are
output by increasing the rate of the output signal or by increasing the size
of the output signal.

• Blocks that process continuous-time signals do not process frame-based
inputs. Such blocks include the analog phase-locked loop blocks.

To learn which blocks processes scalar signals, vector signals, or matrices,
refer to each block’s individual Help page.
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Sample-Based and Frame-Based Processing
In frame-based processing, blocks process data one frame at a time. Each
frame of data contains sequential samples from an independent channel.
For more information, see “Sample- and Frame-Based Concepts” in the DSP
System Toolbox documentation.

In sample-based processing, blocks process signals one sample at a time.
Each element of the input signal represents one sample of a distinct channel.
For more information, see “What Is Sample-Based Processing?” in the DSP
System Toolbox documentation.
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Floating-Point and Fixed-Point Data Types
The inputs and outputs of the communications blocks support various data
types. For some blocks, changing to single outputs can lead to different
results when compared with double outputs for the same set of parameters.
Some blocks may naturally output different data types than what they receive
(e.g. digital modulators) a signal. Refer to the individual block reference
pages for details.

For more information, see “Floating-Point Numbers” in the Simulink® Fixed
Point™ documentation and “Fixed-Point Design” in the DSP System Toolbox
documentation.

Access the Block Support Table
The Communications System Toolbox Block Support Table is available
through the Simulink model Help menu. The table provides information
about data type support and code generation coverage for all Communications
System Toolbox blocks. To access the table, select Help > Block Support
Table > Communications System Toolbox or Help > Block Support
Table > All Tables.
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You can also access the Communications System Toolbox Data Type Support
Table by typing showcommblockdatatypetable at the MATLAB command
line.
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Delays

In this section...

“Section Overview” on page 2-7

“Sources of Delays” on page 2-8

“ADSL Demo Model” on page 2-8

“Punctured Coding Model” on page 2-11

“Use the Find Delay and Align Signals Blocks” on page 2-15

Section Overview
Some models require you to know how long it takes for data in one portion of a
model to influence a signal in another portion of a model. For example, when
configuring an error rate calculator, you must indicate the delay between
the transmitter and the receiver. If you miscalculate the delay, the error
rate calculator processes mismatched pairs of data and consequently returns
a meaningless result.

This section illustrates the computation of delays in multirate models and
in models where the total delay in a sequence of blocks comprises multiple
delays from individual blocks. This section also indicates how to use the Find
Delay and Align Signals blocks to help deal with delays in a model.

Other References for Delays
Other parts of this documentation set also discuss delays. For information
about dealing with delays or about delays in specific types of blocks, see

•

• Find Delay block reference page

• Align Signals block reference page

• Viterbi Decoder block reference page

• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see
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• Example: A Rate 2/3 Feedforward Encoder..

• Example: Soft-Decision Decoding. (See Delay in Received Data.)

• Example: Delays from Demodulation.

Sources of Delays
While some blocks can determine their current output value using only the
current input value, other blocks need input values from multiple time steps
to compute the current output value. In the latter situation, the block incurs
a delay. An example of this case is when the Derepeat block must average five
samples from a scalar signal. The block must delay computing the average
until it has received all five samples.

In general, delays in your model might come from various sources:

• Digital demodulators

• Convolutional interleavers or deinterleavers

• Equalizers

• Viterbi Decoder block

• Buffering, downsampling, derepeating, and similar signal operations

• Explicit delay blocks, such as Delay and Variable Integer Delay

• Filters

The following discussions include some of these sources of delay.

ADSL Demo Model
This section examines the 256 Channel asymmetric digital subscriber line
(ADSL) demonstration model and aims to compute the correct Receive delay
parameter value in one of the Error Rate Calculation blocks in the model.
The model includes delays from convolutional interleaving and an explicit
delay block. To open the ADSL demo model, enter commadsl in the MATLAB
Command Window.

In the ADSL demo, data follows one of two parallel paths, one with a nonzero
delay and the other with a delay of zero. One path includes a convolutional
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interleaver and deinterleaver, while the other does not. Near the end of each
path is an Error Rate Calculation block, whose Receive delay parameter
must reflect the delay of the given path. The rest of the discussion makes an
observation about frame periods in the model and then considers the path
for interleaved data.

Frame Periods in the Model
Before searching for individual delays, first observe that most signal lines
throughout the model share the same frame period. To see this, enable the
Sample Time Display submenu from the model window’s Format menu.
This option colors blocks and signals according to their frame periods (or
sample periods, in the case of sample-based signals). All signal lines at the top
level of the model are the same color, which means that they share the same
frame period. As a consequence, frames are a convenient unit for measuring
delays in the blocks that process these signals. In the computation of the
cumulative delay along a path, the weighted average (of numbers of frames,
weighted by each frame’s period) reduces to a sum.

Path for Interleaved Data
In the transmitter portion of the model, the interleaved path is the lower
branch, shown in yellow below. Similarly, the interleaved path in the receiver
portion of the model is the lower branch. Near the end of the interleaved
path is an Error Rate Calculation block that computes the value labeled
Interleaved BER.

The following table summarizes the delays in the path for noninterleaved
data. Subsequent paragraphs explain the delays in more detail and explain
why the total delay relative to the Error Rate Calculation block is one frame,
or 776 samples.
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Block Delay, in
Output
Samples from
Individual
Block

Delay, in
Frames

Delay, in Input
Samples to
Error Rate
Calculation
Block

Convolutional
Interleaver and
Convolutional
Deinterleaver
pair

40

Delay 800

1 (combined) 776 (combined)

Total N/A 1 776

Interleaving. Unlike the noninterleaved path, the interleaved path contains
a Convolutional Interleaver block in the transmitter and a Convolutional
Deinterleaver block in the receiver. The delay of the interleaver/deinterleaver
pair is the product of the Rows of shift registers parameter, the Register
length step parameter, and one less than the Rows of shift registers
parameter. In this case, the delay of the interleaver/deinterleaver pair turns
out to be 5*2*4 = 40 samples.

Delay Block. The receiver portion of the interleaved path also contains
a Delay block, whose purpose is explained in . This block explicitly causes
a delay of 800 samples having the same sample time as the 40 samples of
delay from the interleaver/deinterleaver pair. Therefore, the total delay from
interleaving, deinterleaving, and the explicit delay is 840 samples. These 840
samples make up one frame of data leaving the Delay block.

Summing the Delays. No other blocks in the interleaved path of the demo
cause any delays. Adding the delays from the interleaver/deinterleaver pair
and the Delay block indicates that the total delay in the interleaved path
is one frame.
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Total Delay Relative to Error Rate Calculation Block. The Error Rate
Calculation block that computes the value labeled Interleaved BER requires
a Receive delay parameter value that is equivalent to one frame. The
Receive delay parameter is measured in samples and each input frame to
the Error Rate Calculation block contains 776 samples. Also, the frame rate
at the outports of all delay-causing blocks in the interleaved path equals the
frame rate at the input of the Error Rate Calculation block. Therefore, the
correct value for the Receive delay parameter is 776 samples.

Punctured Coding Model
This section discusses a punctured coding model that includes delays from
decoding, downsampling, and filtering. Two Error Rate Calculation blocks
in the model work correctly if and only if their Receive delay parameters
accurately reflect the delays in the model. To open the model, enter doc_punct
in the MATLAB Command Window.

Frame Periods in the Model
Before searching for individual delays, first enable the Sample Time Display
submenu from the model window’s Format menu. Only the rightmost portion
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of the model differs in color from the rest of the model. This means that all
signals and blocks in the model except those in the rightmost edge share
the same frame period. Consequently, frames at this predominant frame
rate are a convenient unit for measuring delays in the blocks that process
these signals. In the computation of the cumulative delay along a path, the
weighted average (of numbers of frames, weighted by each frame’s period)
reduces to a sum.

The yellow blocks represent multirate systems, while the AWGN Channel
block and the Rx Filter block run at a higher frame rate than most other
blocks in the model.

Inner Error Rate Block
The block labeled Inner Error Rate, located near the center of the model, is a
copy of the Error Rate Calculation block from the Sinks library. It computes
the bit error rate for the portion of the model that excludes the punctured
convolutional code. In the portion of the model between this block’s two input
signals, delays come from the Tx Filter, Rx Filter, and Downsample blocks, as
summarized in the following table. This section explains why the Inner Error
Rate block’s Receive delay parameter is the total delay value of 16.

Block Delay, in
Samples at
Individual
Block

Delay, in
Frames at
Predominant
Frame Rate

Delay, in Input
Samples to
Inner Error
Rate Block

Tx Filter 3 3/2 6

Rx Filter 3 (relative to
input of Tx Filter
block)

3/2 6

Downsample 2 1 4

Total N/A 4 16

Tx Filter Block. The block labeled Tx Filter is a copy of the FIR Interpolation
block in DSP System Toolbox software. It upsamples the input signal by a
factor of 8 and applies a square-root raised cosine filter. The value of the
block’s FIR filter coefficients parameter is

2-12



Delays

rcosine(1, 8, 'sqrt', 0.5, 3)

where the ratio 3/1 indicates that the delay caused by the filter is 3 times
the sample period (not frame period) of the signal before upsampling.
Because the input signal is not upsampled and is a two-sample frame at the
model’s predominant frame rate, the delay is equivalent to 3/2 frames at
the predominant frame rate.

Rx Filter Block. The block labeled Rx Filter is another copy of the FIR
Interpolation block, but it differs from the Tx Filter block in that its
Interpolation factor parameter is 1 instead of 8. The values of that
parameter differ in the two filter blocks because the Tx Filter block needs to
upsample the signal to prepare for transmission along the channel, while the
Rx Filter processes a signal that is already upsampled and needs no further
upsampling. Thus the Rx Filter block merely applies a square-root raised
cosine filter without upsampling its input data. As in the case of the Tx Filter
block, the delay caused by the Rx Filter block is three times the sample period
(not frame period) of the signal without upsampling. The frame rate without
upsampling is just the model’s predominant frame rate, so the delay of the Rx
Filter block is the same as that of the Tx Filter block. That is, the delay is
equivalent to 3/2 frames at the predominant frame rate.

Note This example uses the FIR Interpolation block approach to illustrate
how to deal with multiple frame rates in the same model. Alternatively, the
model could have used the Raised Cosine Transmit Filter and Raised Cosine
Receive Filter blocks in Communications System Toolbox software. In that
case, the frame rate would be constant throughout the system, and the total
delay values discussed in this document would be different.

Downsample Block. The Downsample block reduces the frame rate of the
filtered received data. Its delay is one output frame, as stated on the reference
page for the Downsample block. Because the frame rate at the outport equals
the model’s predominant frame rate, the delay of the Downsample block is
one frame at the predominant frame rate.
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Summing the Delays. No other blocks in the portion of the model between
the Inner Error Rate block’s two input signals cause any delays. Adding the
two 3/2-frame delays from the two filter blocks with the one-frame delay from
the Downsample block indicates that the total delay in this portion of the
model is four frames.

Total Delay Relative to Inner Error Rate Block. The Inner Error Rate
block requires a Receive delay parameter value that is equivalent to four
frames. The Receive delay parameter is measured in samples and each
input frame to the Inner Error Rate block contains four samples. Therefore,
the correct value for the Receive delay parameter is 16 samples.

Outer Error Rate Block
The block labeled Outer Error Rate, located at the left of the model, is a copy
of the Error Rate Calculation block from the Sinks library. It computes the bit
error rate for the entire model, including the punctured convolutional code.
Delays come from the Tx Filter, Rx Filter, Downsample, and Viterbi Decoder
blocks, as summarized in the table below. This section explains why the Outer
Error Rate block’s Receive delay parameter is the total delay value of 108.

Block Delay, in
Samples at
Individual
Block

Delay, in
Frames at
Predominant
Frame Rate

Delay, in Input
Samples to
Outer Error
Rate Block

Tx Filter 3 3/2 9/2

Rx Filter 3 (relative to
input of Tx Filter
block)

3/2 9/2

Downsample 2 1 3

Viterbi Decoder 96 32 96

Total N/A 36 108

Filter and Downsample Blocks. The Tx Filter, Rx Filter, and Downsample
blocks have a combined delay of four frames at the model’s predominant frame
rate. For details, see “Inner Error Rate Block” on page 2-12.
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Viterbi Decoder Block. The Viterbi Decoder block decodes the convolutional
code, and the algorithm’s use of a traceback path causes a delay. The block
processes a frame-based signal and has Operation mode set to Continuous.
Therefore, the delay, measured in output samples, is equal to the Traceback
depth parameter value of 96. (The delay amount is stated on the reference
page for the Viterbi Decoder block.) Because the output of the Viterbi Decoder
block is precisely one of the inputs to the Outer Error Rate block, it is easier to
consider the delay to be 96 samples rather than to convert it to an equivalent
number of frames.

Total Delay Relative to Outer Error Rate Block. The Outer Error Rate
block requires a Receive delay parameter value that is equivalent to four
frames plus 96 samples. The Receive delay parameter is measured in
samples, and each input frame to the Outer Error Rate block contains three
samples. Therefore, the correct value for the Receive delay parameter is
4*3+96 = 108 samples.

Note The Outer Error Rate block accounts for the four-frame delay from
filtering and downsampling by expressing it as 12 samples when computing
the Receive delay parameter. Recall that the Inner Error Rate block
accounts for the same four-frame delay but expresses it as 16 samples, not
12. The expressions differ because the two error rate blocks express delays in
terms of samples rather than frames, yet process signals of different sizes.

Use the Find Delay and Align Signals Blocks
The preceding discussions explained why certain Error Rate Calculation
blocks in the models had specific Receive delay parameter values. You could
have arrived at those numbers independently by using the Find Delay block,
or you could have avoided needing to know those numbers by using the Align
Signals block. This section explains both techniques using the ADSL demo
model, commadsl, as an example. Applying the techniques to the punctured
convolutional coding example, discussed in “Punctured Coding Model” on
page 2-11, would be similar.
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Using the Find Delay Block to Determine the Correct Receive
Delay
Recall from “Path for Interleaved Data” on page 2-9 that the delay in the path
for interleaved data is 776 samples. To have the Find Delay block compute
that value for you, use this procedure:

1 Insert a Find Delay block and a Display block in the model near the Error
Rate Calculation block that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

3 Set the Find Delay block’s Correlation window length parameter to a
value substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else
the values produced by the Find Delay block do not stabilize at a correct
value.

4 Run the simulation.

The new Display block now shows the value 776, as expected.

Using the Align Signals Block Before Computing the Error Rate
To use the Error Rate Calculation block to compute the value labeled
Interleaved BER without having to set the Receive delay parameter to a
nonzero value, you can use the Align Signals block to automatically align the

2-16



Delays

transmitted and received signals before the Error Rate Calculation block
performs its computations. Use this procedure:

1 Insert an Align Signals block and a Display block in the model near the
Error Rate Calculation block that computes the value labeled Interleaved
BER.

2 Connect the blocks as shown below.

3 Set the Align Signals block’s Correlation window length parameter to a
value substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else
the Align Signals block cannot find the correct amount by which to delay
one of the signals. If the delay output from the Align Signals block does
not stabilize at a constant value, the correlation window length is probably
too small.

4 Set the Error Rate Calculation block’s Receive delay parameter to 0.
You might also want to set the block’s Computation delay parameter to
a nonzero value to account for the possibility that the Align Signals block
takes a nonzero amount of time to stabilize on the correct amount by which
to delay one of the signals.

5 Run the simulation.

The new Display block now shows the value 776. Also, the Align Signals block
delays one signal relative to the other so that the signals are aligned. The
Error Rate Calculation block therefore processes two signals that are properly
aligned with each other and does not need to use a nonzero Receive delay
parameter to attempt any further alignment.
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Examining the delay output signal from the Align Signals block, using the
Display block as in the figure above, is important because if the delay output
signal does not stabilize at a constant value, the signals are not truly aligned
and the error rate is not reliable. In this case, the Align Signals block’s
Correlation window length parameter is probably too small.
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• “Source Coding” on page 3-2

• “Error Detection and Correction” on page 3-16

• “Interleaving” on page 3-168

• “Digital Modulation” on page 3-188

• “Analog Passband Modulation” on page 3-228

• “Filtering” on page 3-236

• “Synchronization” on page 3-260

• “Equalization” on page 3-282

• “Multiple-Input Multiple-Output (MIMO)” on page 3-321
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Source Coding

In this section...

“Represent Partitions” on page 3-2

“Represent Codebooks” on page 3-3

“Determine Which Interval Each Input Is In” on page 3-3

“Optimize Quantization Parameters” on page 3-4

“Differential Pulse Code Modulation” on page 3-5

“Optimize DPCM Parameters” on page 3-7

“Compand a Signal” on page 3-9

“Huffman Coding” on page 3-10

“Arithmetic Coding” on page 3-12

“Quantize a Signal” on page 3-14

Represent Partitions
Scalar quantization is a process that maps all inputs within a specified range
to a common value. This process maps inputs in a different range of values to
a different common value. In effect, scalar quantization digitizes an analog
signal. Two parameters determine a quantization: a partition and a codebook.

A quantization partition defines several contiguous, nonoverlapping ranges of
values within the set of real numbers. To specify a partition in the MATLAB
environment, list the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}

• {x: 0< x ≤ 1}

• {x: 1 < x ≤ 3}

• {x: 3 < x}

then you can represent the partition as the three-element vector
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partition = [0,1,3];

The length of the partition vector is one less than the number of partition
intervals.

Represent Codebooks
A codebook tells the quantizer which common value to assign to inputs that
fall into each range of the partition. Represent a codebook as a vector whose
length is the same as the number of partition intervals. For example, the
vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Determine Which Interval Each Input Is In
The quantiz function also returns a vector that tells which interval each
input is in. For example, the output below says that the input entries lie
within the intervals labeled 0, 6, and 5, respectively. Here, the 0th interval
consists of real numbers less than or equal to 3; the 6th interval consists of
real numbers greater than 8 but less than or equal to 9; and the 5th interval
consists of real numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

0
6
5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];
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then the equation below relates the vector index to the quantized signal
quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you
instead phrase the example more concisely as below.

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters

• “Section Overview” on page 3-4

• “Example: Optimizing Quantization Parameters” on page 3-4

Section Overview
Quantization distorts a signal. You can reduce distortion by choosing
appropriate partition and codebook parameters. However, testing and
selecting parameters for large signal sets with a fine quantization scheme can
be tedious. One way to produce partition and codebook parameters easily is to
optimize them according to a set of so-called training data.

Note The training data you use should be typical of the kinds of signals you
will actually be quantizing.

Example: Optimizing Quantization Parameters
The lloyds function optimizes the partition and codebook according to the
Lloyd algorithm. The code below optimizes the partition and codebook for one
period of a sinusoidal signal, starting from a rough initial guess. Then it
uses these parameters to quantize the original signal using the initial guess
parameters as well as the optimized parameters. The output shows that
the mean square distortion after quantizing is much less for the optimized
parameters. The quantiz function automatically computes the mean square
distortion and returns it as the third output parameter.
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% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];
sig = sin(t);
partition = [-1:.2:1];
codebook = [-1.2:.2:1];
% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);
% Compare mean square distortions from initial and optimized
[distor, distor2] % parameters.

The output is

ans =

0.0148 0.0024

Differential Pulse Code Modulation

• “Section Overview” on page 3-5

• “DPCM Terminology” on page 3-6

• “Represent Predictors” on page 3-6

• “Example: DPCM Encoding and Decoding” on page 3-6

Section Overview
The quantization in the section “Quantize a Signal” on page 3-14 requires
no a priori knowledge about the transmitted signal. In practice, you can
often make educated guesses about the present signal based on past signal
transmissions. Using such educated guesses to help quantize a signal is
known as predictive quantization. The most common predictive quantization
method is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a
DPCM predictive quantizer with a linear predictor.
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DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a
partition and codebook as described in “Represent Partitions” on page 3-2 and
“Represent Codebooks” on page 3-3, but also a predictor. The predictor is a
function that the DPCM encoder uses to produce the educated guess at each
step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and
p is an m-tuple of real numbers. Instead of quantizing x itself, the DPCM
encoder quantizes the predictive error, x-y. The integer m above is called the
predictive order. The special case when m = 1 is called delta modulation.

Represent Predictors
If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note The initial zero in the predictor vector makes sense if you view the
vector as the polynomial transfer function of a finite impulse response (FIR)
filter.

Example: DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal’s
current value and its value at the previous step. Thus the predictor is just
y(k) = x (k - 1). The code below implements this scheme. It encodes a
sawtooth signal, decodes it, and plots both the original and decoded signals.
The solid line is the original signal, while the dashed line is the recovered
signals. The example also computes the mean square error between the
original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)
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partition = [-1:.1:.9];
codebook = [-1:.1:1];
t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx,'--')
legend('Original signal','Decoded signal','Location','NorthOutside');
distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

0.0327

Optimize DPCM Parameters

• “Section Overview” on page 3-8

• “Example: Comparing Optimized and Nonoptimized DPCM Parameters”
on page 3-8
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Section Overview
The section “Optimize Quantization Parameters” on page 3-4 describes how
to use training data with the lloyds function to help find quantization
parameters that will minimize signal distortion.

This section describes similar procedures for using the dpcmopt function
in conjunction with the two functions dpcmenco and dpcmdeco, which first
appear in the previous section.

Note The training data you use with dpcmopt should be typical of the kinds
of signals you will actually be quantizing with dpcmenco.

Example: Comparing Optimized and Nonoptimized DPCM
Parameters
This example is similar to the one in the last section. However, where the last
example created predictor, partition, and codebook in a straightforward
but haphazard way, this example uses the same codebook (now called
initcodebook) as an initial guess for a new optimized codebook parameter.
This example also uses the predictive order, 1, as the desired order of the
new optimized predictor. The dpcmopt function creates these optimized
parameters, using the sawtooth signal x as training data. The example goes
on to quantize the training data itself; in theory, the optimized parameters
are suitable for quantizing other data that is similar to x. Notice that the
mean square distortion here is much less than the distortion in the previous
example.

t = [0:pi/50:2*pi];
x = sawtooth(3*t); % Original signal
initcodebook = [-1:.1:1]; % Initial guess at codebook
% Optimize parameters, using initial codebook and order 1.
[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);
% Quantize x using DPCM.
encodedx = dpcmenco(x,codebook,partition,predictor);
% Try to recover x from the modulated signal.
decodedx = dpcmdeco(encodedx,codebook,predictor);
distor = sum((x-decodedx).^2)/length(x) % Mean square error
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The output is

distor =

0.0063

Compand a Signal

• “Section Overview” on page 3-9

• “Example: µ-Law Compander” on page 3-9

Section Overview
In certain applications, such as speech processing, it is common to use a
logarithm computation, called a compressor, before quantizing. The inverse
operation of a compressor is called an expander. The combination of a
compressor and expander is called a compander.

The compand function supports two kinds of companders: µ-law and A-law
companders. Its reference page lists both compressor laws.

Example: µ-Law Compander
The code below quantizes an exponential signal in two ways and compares the
resulting mean square distortions. First, it uses the quantiz function with
a partition consisting of length-one intervals. In the second trial, compand
implements a µ-law compressor, quantiz quantizes the compressed data, and
compand expands the quantized data. The output shows that the distortion
is smaller for the second scheme. This is because equal-length intervals are
well suited to the logarithm of sig, but not well suited to sig. The figure
shows how the compander changes sig.

Mu = 255; % Parameter for mu-law compander
sig = -4:.1:4;
sig = exp(sig); % Exponential signal to quantize
V = max(sig);
% 1. Quantize using equal-length intervals and no compander.
[index,quants,distor] = quantiz(sig,0:floor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress
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% before quantizing and expand afterwards.
compsig = compand(sig,Mu,V,'mu/compressor');
[index,quants] = quantiz(compsig,0:floor(V),0:ceil(V));
newsig = compand(quants,Mu,max(quants),'mu/expander');
distor2 = sum((newsig-sig).^2)/length(sig);
[distor, distor2] % Display both mean square distortions.

plot(sig); % Plot original signal.
hold on;
plot(compsig,'r--'); % Plot companded signal.
legend('Original','Companded','Location','NorthWest')

The output and figure are below.

ans =

0.5348 0.0397

Huffman Coding

• “Section Overview” on page 3-11

• “Create a Huffman Code Dictionary in MATLAB” on page 3-11
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• “Create and Decode a Huffman Code Using MATLAB” on page 3-12

Section Overview
Huffman coding offers a way to compress data. The average length of a
Huffman code depends on the statistical frequency with which the source
produces each symbol from its alphabet. A Huffman code dictionary, which
associates each data symbol with a codeword, has the property that no
codeword in the dictionary is a prefix of any other codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support
Huffman coding and decoding.

Note For long sequences from sources having skewed distributions and
small alphabets, arithmetic coding compresses better than Huffman coding.
To learn how to use arithmetic coding, see “Arithmetic Coding” on page 3-12.

Create a Huffman Code Dictionary in MATLAB
Huffman coding requires statistical information about the source of the data
being encoded. In particular, the p input argument in the huffmandict
function lists the probability with which the source produces each symbol in
its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s
with probability 0.1, and 3s with probability 0.8. The main computational
step in encoding data from this source using a Huffman code is to create a
dictionary that associates each data symbol with a codeword. The commands
below create such a dictionary and then show the codeword vector associated
with a particular value from the data source.

symbols = [1 2 3]; % Data symbols
p = [0.1 0.1 0.8]; % Probability of each data symbol
dict = huffmandict(symbols,p) % Create the dictionary.
dict{1,:} % Show one row of the dictionary.

The output below shows that the most probable data symbol, 3, is associated
with a one-digit codeword, while less probable data symbols are associated
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with two-digit codewords. The output also shows, for example, that a Huffman
encoder receiving the data symbol 1 should substitute the sequence 11.

dict =

[1] [1x2 double]
[2] [1x2 double]
[3] [ 0]

ans =

1

ans =

1 1

Create and Decode a Huffman Code Using MATLAB
The example below performs Huffman encoding and decoding, using a
source whose alphabet has three symbols. Notice that the huffmanenco and
huffmandeco functions use the dictionary that huffmandict created.

sig = repmat([3 3 1 3 3 3 3 3 2 3],1,50); % Data to encode
symbols = [1 2 3]; % Distinct data symbols appearing in sig
p = [0.1 0.1 0.8]; % Probability of each data symbol
dict = huffmandict(symbols,p); % Create the dictionary.
hcode = huffmanenco(sig,dict); % Encode the data.
dhsig = huffmandeco(hcode,dict); % Decode the code.

Arithmetic Coding

• “Section Overview” on page 3-13

• “Represent Arithmetic Coding Parameters” on page 3-13

• “Create and Decode an Arithmetic Code Using MATLAB” on page 3-13
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Section Overview
Arithmetic coding offers a way to compress data and can be useful for data
sources having a small alphabet. The length of an arithmetic code, instead
of being fixed relative to the number of symbols being encoded, depends on
the statistical frequency with which the source produces each symbol from its
alphabet. For long sequences from sources having skewed distributions and
small alphabets, arithmetic coding compresses better than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and
decoding.

Represent Arithmetic Coding Parameters
Arithmetic coding requires statistical information about the source of the data
being encoded. In particular, the counts input argument in the arithenco
and arithdeco functions lists the frequency with which the source produces
each symbol in its alphabet. You can determine the frequencies by studying a
set of test data from the source. The set of test data can have any size you
choose, as long as each symbol in the alphabet has a nonzero frequency.

For example, before encoding data from a source that produces 10 x’s, 10 y’s,
and 80 z’s in a typical 100-symbol set of test data, define

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x’s, 23
y’s, and 185 z’s, then define

counts = [22 23 185];

Create and Decode an Arithmetic Code Using MATLAB
The example below performs arithmetic encoding and decoding, using a
source whose alphabet has three symbols.

seq = repmat([3 3 1 3 3 3 3 3 2 3],1,50);
counts = [10 10 80];
code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq));

3-13



3 System Design

Quantize a Signal

• “Scalar Quantization Example 1” on page 3-14

• “Scalar Quantization Example 2” on page 3-14

Scalar Quantization Example 1
The code below shows how the quantiz function uses partition and
codebook to map a real vector, samp, to a new vector, quantized, whose
entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized

The output is below.

quantized =

Columns 1 through 6

-1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

Columns 7 through 12

2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

Column 13

3.0000

Scalar Quantization Example 2
This example illustrates the nature of scalar quantization more clearly. After
quantizing a sampled sine wave, it plots the original and quantized signals.
The plot contrasts the x’s that make up the sine curve with the dots that

3-14



Source Coding

make up the quantized signal. The vertical coordinate of each dot is a value in
the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave
partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig,'x',t,quants,'.')
legend('Original signal','Quantized signal');
axis([-.2 7 -1.2 1.2])
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Error Detection and Correction

In this section...

“Cyclic Redundancy Check Codes” on page 3-16

“Block Codes” on page 3-20

“Convolutional Codes” on page 3-39

“Linear Block Codes” on page 3-73

“Hamming Codes” on page 3-85

“BCH Codes” on page 3-94

“Reed-Solomon Codes” on page 3-102

“LDPC Codes” on page 3-114

“Galois Field Computations” on page 3-114

“Galois Fields of Odd Characteristic” on page 3-150

Cyclic Redundancy Check Codes

• “CRC-Code Features” on page 3-16

• “CRC Algorithm” on page 3-18

• “Selected Bibliography for CRC Coding” on page 3-20

CRC-Code Features
Cyclic redundancy check (CRC) coding is an error-control coding technique
for detecting errors that occur when a message is transmitted. Unlike block
or convolutional codes, CRC codes do not have a built-in error-correction
capability. Instead, when a communications system detects an error in a
received message word, the receiver requests the sender to retransmit the
message word.

In CRC coding, the transmitter applies a rule to each message word to create
extra bits, called the checksum, or syndrome, and then appends the checksum
to the message word. After receiving a transmitted word, the receiver applies
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the same rule to the received word. If the resulting checksum is nonzero, an
error has occurred, and the transmitter should resend the message word.

Open the Error Detection and Correction library by double-clicking its icon
in the main Communications System Toolbox block library. Open the CRC
sublibrary by double-clicking on its icon in the Error Detection and Correction
library.

Communications System Toolbox supports CRC Coding using Simulink
blocks, System objects, or MATLAB objects.

Blocks. The CRC block library contains four blocks that implement the
CRC algorithm:

• General CRC Generator

• General CRC Syndrome Detector

• CRC-N Generator

• CRC-N Syndrome Detector

The General CRC Generator block computes a checksum for each input frame,
appends it to the message word, and transmits the result. The General CRC
Syndrome Detector block receives a transmitted word and calculates its
checksum. The block has two outputs. The first is the message word without
the transmitted checksum. The second output is a binary error flag, which is
0 if the checksum computed for the received word is zero, and 1 otherwise.

The CRC-N Generator block and CRC-N Syndrome Detector block are special
cases of the General CRC Generator block and General CRC Syndrome
Detector block, which use a predefined CRC-N polynomial, where N is the
number of bits in the checksum.

See the General CRC Generator block Reference page for an example of Cyclic
Redundancy Check Encoding.

System objects. The following System objects implement the CRC
algorithm:

• comm.CRCDetector
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• comm.CRCGenerator

These reference pages contain examples demonstrating the use of the object.

MATLAB objects. The following MATLAB objects implement the CRC
algorithm:

• crc.detector

• crc.generator

These reference pages contain examples demonstrating the use of the object.

CRC Algorithm
The CRC algorithm accepts a binary data vector, corresponding to a
polynomial M, and appends a checksum of r bits, corresponding to a
polynomial C. The concatenation of the input vector and the checksum
then corresponds to the polynomial T = M*xr + C, since multiplying by xr

corresponds to shifting the input vector r bits to the left. The algorithm
chooses the checksum C so that T is divisible by a predefined polynomial P of
degree r, called the generator polynomial.

The algorithm divides T by P, and sets the checksum equal to the binary
vector corresponding to the remainder. That is, if T = Q*P + R, where R
is a polynomial of degree less than r, the checksum is the binary vector
corresponding to R. If necessary, the algorithm prepends zeros to the
checksum so that it has length r.

The CRC generation feature, which implements the transmission phase of the
CRC algorithm, does the following:

1 Left shifts the input data vector by r bits and divides the corresponding
polynomial by P.

2 Sets the checksum equal to the binary vector of length r, corresponding to
the remainder from step 1.

3 Appends the checksum to the input data vector. The result is the output
vector.
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The CRC detection feature computes the checksum for its entire input vector,
as described above.

The CRC algorithm uses binary vectors to represent binary polynomials, in
descending order of powers. For example, the vector [1 1 0 1] represents
the polynomial x3 + x2 + 1.

Note The implementation described in this section is one of many valid
implementations of the CRC algorithm. Different implementations can yield
different numerical results.

Bits enter the linear feedback shift register (LFSR) from the lowest index
bit to the highest index bit. The sequence of input message bits represents
the coefficients of a message polynomial in order of decreasing powers. The
message vector is augmented with r zeros to flush out the LFSR, where r
is the degree of the generator polynomial. If the output from the leftmost
register stage d(1) is a 1, then the bits in the shift register are XORed with
the coefficients of the generator polynomial. When the augmented message
sequence is completely sent through the LFSR, the register contains the
checksum [d(1) d(2) . . . d(r)]. This is an implementation of binary long
division, in which the message sequence is the divisor (numerator) and
the polynomial is the dividend (denominator). The CRC checksum is the
remainder of the division operation.
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Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication
and Storage, Upper Saddle River, NJ, Prentice Hall, 1995.

Block Codes

• “Block-Coding Features” on page 3-20

• “Terminology” on page 3-22

• “Data Formats for Block Coding” on page 3-22

• “Using Block Encoders and Decoders Within a Model” on page 3-25

• “Examples of Block Coding” on page 3-26

• “Notes on Specific Block-Coding Techniques” on page 3-28

• “Shortening, Puncturing, and Erasures” on page 3-32

• “Reed-Solomon Code in Integer Format” on page 3-36

• “Find a Generator Polynomial” on page 3-36

• “Performing Other Block Code Tasks” on page 3-37

• “Selected Bibliography for Block Coding” on page 3-39

Block-Coding Features
Error-control coding techniques detect, and possibly correct, errors that
occur when messages are transmitted in a digital communication system.
To accomplish this, the encoder transmits not only the information symbols
but also extra redundant symbols. The decoder interprets what it receives,
using the redundant symbols to detect and possibly correct whatever errors
occurred during transmission. You might use error-control coding if your
transmission channel is very noisy or if your data is very sensitive to noise.
Depending on the nature of the data or noise, you might choose a specific
type of error-control coding.
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Block coding is a special case of error-control coding. Block-coding techniques
map a fixed number of message symbols to a fixed number of code symbols.
A block coder treats each block of data independently and is a memoryless
device. Communications System Toolbox contains block-coding capabilities by
providing Simulink blocks, System objects, and MATLAB functions.

The class of block-coding techniques includes categories shown in the diagram
below.
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Communications System Toolbox supports general linear block codes. It
also process cyclic, BCH, Hamming, and Reed-Solomon codes (which are all
special kinds of linear block codes). Blocks in the product can encode or
decode a message using one of the previously mentioned techniques. The
Reed-Solomon and BCH decoders indicate how many errors they detected
while decoding. The Reed-Solomon coding blocks also let you decide whether
to use symbols or bits as your data.

Note The blocks and functions in this product are designed for error-control
codes that use an alphabet having 2 or 2m symbols.

Communications System Toolbox Support Functions. Functions in
Communications System Toolbox can support simulation blocks by

• Determining characteristics of a technique, such as error-correction
capability or possible message lengths

• Performing lower-level computations associated with a technique, such as
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- Computing a truth table

- Computing a generator or parity-check matrix

- Converting between generator and parity-check matrices

- Computing a generator polynomial

For more information about error-control coding capabilities, see “Block
Codes” on page 3-20 in the Communications System Toolbox User’s Guide.

Terminology
Throughout this section, the information to be encoded consists of message
symbols and the code that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of
N message symbols. K is called the message length, N is called the codeword
length, and the code is called an [N,K] code.

Data Formats for Block Coding
Each message or codeword is an ordered grouping of symbols. Each block in
the Block Coding sublibrary processes one word in each time step, as described
in the following section, “Binary Format (All Coding Methods)” on page 3-22.
Reed-Solomon coding blocks also let you choose between binary and integer
data, as described in “Integer Format (Reed-Solomon Only)” on page 3-24.

Binary Format (All Coding Methods). You can structure messages and
codewords as binary vector signals, where each vector represents a message
word or a codeword. At a given time, the encoder receives an entire message
word, encodes it, and outputs the entire codeword. The message and code
signals share the same sample time.

The figure below illustrates this situation. In this example, the encoder
receives a four-bit message and produces a five-bit codeword at time 0. It
repeats this process with a new message at time 1.
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For all coding techniques except Reed-Solomon using binary input, the
message vector must have length K and the corresponding code vector has
length N. For Reed-Solomon codes with binary input, the symbols for the code
are binary sequences of length M, corresponding to elements of the Galois
field GF(2M). In this case, the message vector must have length M*K and the
corresponding code vector has length M*N. The Binary-Input RS Encoder
block and the Binary-Output RS Decoder block use this format for messages
and codewords.

If the input to a block-coding block is a frame-based vector, it must be a
column vector instead of a row vector.

To produce sample-based messages in the binary format, you can configure
the Bernoulli Binary Generator block so that its Probability of a zero
parameter is a vector whose length is that of the signal you want to create. To
produce frame-based messages in the binary format, you can configure the
same block so that its Probability of a zero parameter is a scalar and its
Samples per frame parameter is the length of the signal you want to create.

Using Serial Signals

If you prefer to structure messages and codewords as scalar signals, where
several samples jointly form a message word or codeword, you can use the
Buffer and Unbuffer blocks in DSP System Toolbox. Be aware that buffering
involves latency and multirate processing. See the reference page for the
Buffer block for more details. If your model computes error rates, the initial
delay in the coding-buffering combination influences the Receive delay
parameter in the Error Rate Calculation block. If you are unsure about
the sample times of signals in your model, selecting Sample time colors
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from the Port/signal displays submenu of the model’s Format menu, or
attaching Probe blocks (from the Simulink Signal Attributes library) to
connector lines might help.

Integer Format (Reed-Solomon Only). A message word for an [N,K]
Reed-Solomon code consists of M*K bits, which you can interpret as K
symbols between 0 and 2M. The symbols are binary sequences of length M,
corresponding to elements of the Galois field GF(2M), in descending order
of powers. The integer format for Reed-Solomon codes lets you structure
messages and codewords as integer signals instead of binary signals. (The
input must be a frame-based column vector.)

Note In this context, Simulink expects the first bit to be the most significant
bit in the symbol. “First” means the smallest index in a vector or the smallest
time for a series of scalars.

The following figure illustrates the equivalence between binary and integer
signals for a Reed-Solomon encoder. The case for the decoder is similar.
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To produce sample-based messages in the integer format, you can configure
the Random Integer Generator block so that M-ary number and Initial
seed parameters are vectors of the desired length and all entries of theM-ary
number vector are 2M. To produce frame-based messages in the integer
format, you can configure the same block so that its M-ary number and
Initial seed parameters are scalars and its Samples per frame parameter
is the length of the signal you want to create.

Using Block Encoders and Decoders Within a Model
Once you have configured the coding blocks, a few tips can help you place
them correctly within your model:

• If a block has multiple outputs, the first one is always the stream of coding
data.

The Reed-Solomon and BCH blocks have an error counter as a second
output.
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• Be sure the signal sizes are appropriate for the mask parameters. For
example, if you use the Binary Cyclic Encoder block and set Message
length K to 4, the input signal must be a vector of length 4.

If you are unsure about the size of signals in your model, selecting Signal
Dimensions from the Port/Signal Displays submenu of the model’s
Format menu might help.

Examples of Block Coding

Example: Reed-Solomon Code in Integer Format. This example uses
a Reed-Solomon code in integer format. It illustrates the appropriate vector
lengths of the code and message signals for the coding blocks. It also exhibits
error correction, using a very simple way of introducing errors into each
codeword.

Open the model by typing doc_rscoding at the MATLAB command line. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Comm Sources library

- Set M-ary number to 15.

- Set Initial seed to a positive number, randseed(0) is chosen here.

- Check the Frame-based outputs check box.

- Set Samples per frame to 5.

• Integer-Input RS Encoder

- Set Codeword length N to 15.

- Set Message length K to 5.
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• Gain, in the Simulink Math Operations library

- Set Gain to [0; 0; 0; 0; 0; ones(10,1)].

• Integer-Output RS Decoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.

• Sum, in the Simulink Math Operations library

- Set List of signs to |-+

Connect the blocks as in the preceding figure. From the model window’s
Simulation menu, select Configuration Parameters. In the Configuration
Parameters dialog box, set Stop Time to 500.

The vector length numbers appear on the connecting lines only if you select
Signal Dimensions from the Port/Signal Displays submenu of the model’s
Format menu. The encoder accepts a vector of length 5 (which is K in this
case) and produces a vector of length 15 (which is N in this case). The decoder
does the opposite.

Running the model produces the following scope images. Your plot of the
error counts might differ somewhat, depending on your Initial Seed value
in the Random Integer Generator block. (To make the axis range exactly
match that of the first scope, right-click the plot area in the scope and select
Axes Properties.)
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Number of Errors Before Correction

The second plot is the number of errors that the decoder detected while trying
to recover the message. Often the number is five because the Gain block
replaces the first five symbols in each codeword with zeros. However, the
number of errors is less than five whenever a correct codeword contains one
or more zeros in the first five places.

The first plot is the difference between the original message and the recovered
message; since the decoder was able to correct all errors that occurred, each of
the five data streams in the plot is zero.

Notes on Specific Block-Coding Techniques
Although the Block Coding sublibrary is somewhat uniform in its look and
feel, the various coding techniques are not identical. This section describes
special options and restrictions that apply to parameters and signals for the
coding technique categories in this sublibrary. Read the part that applies to
the coding technique you want to use: generic linear block code, cyclic code,
Hamming code, BCH code, or Reed-Solomon code.

Generic Linear Block Codes. Encoding a message using a generic linear
block code requires a generator matrix. Decoding the code requires the
generator matrix and possibly a truth table. In order to use the Binary
Linear Encoder and Binary Linear Decoder blocks, you must understand the
Generator matrix and Error-correction truth table parameters.
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Generator Matrix

The process of encoding a message into an [N,K] linear block code is
determined by a K-by-N generator matrix G. Specifically, a 1-by-K message
vector v is encoded into the 1-by-N codeword vector vG. If G has the form [Ik,
P] or [P, Ik], where P is some K-by-(N-K) matrix and Ik is the K-by-K identity
matrix, G is said to be in standard form. (Some authors, such as Clark and
Cain , use the first standard form, while others, such as Lin and Costello ,
use the second.) The linear block-coding blocks in this product require the
Generator matrix mask parameter to be in standard form.

Decoding Table

A decoding table tells a decoder how to correct errors that might have
corrupted the code during transmission. Hamming codes can correct any
single-symbol error in any codeword. Other codes can correct, or partially
correct, errors that corrupt more than one symbol in a given codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the
Error-correction truth table parameter. Represent a decoding table as a
matrix with N columns and 2N-K rows. Each row gives a correction vector for
one received codeword vector.

If you do not want to specify a decoding table explicitly, set that parameter
to 0. This causes the block to compute a decoding table using the syndtable
function in Communications System Toolbox.

Cyclic Codes. For cyclic codes, the codeword length N must have the form
2M-1, where M is an integer greater than or equal to 3.

Generator Polynomials

Cyclic codes have special algebraic properties that allow a polynomial to
determine the coding process completely. This so-called generator polynomial
is a degree-(N-K) divisor of the polynomial xN-1. Van Lint explains how a
generator polynomial determines a cyclic code.
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The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to
specify a generator polynomial as the second mask parameter, instead of
specifying K there. The blocks represent a generator polynomial using a
vector that lists the polynomial’s coefficients in order of ascending powers of
the variable. You can find generator polynomials for cyclic codes using the
cyclpoly function in Communications System Toolbox.

If you do not want to specify a generator polynomial, set the second mask
parameter to the value of K.

Hamming Codes. For Hamming codes, the codeword length N must have
the form 2M-1, where M is an integer greater than or equal to 3. The message
length K must equal N-M.

Primitive Polynomials

Hamming codes rely on algebraic fields that have 2M elements (or, more
generally, pM elements for a prime number p). Elements of such fields are
named relative to a distinguished element of the field that is called a primitive
element. The minimal polynomial of a primitive element is called a primitive
polynomial. The Hamming Encoder and Hamming Decoder blocks allow
you to specify a primitive polynomial for the finite field that they use for
computations. If you want to specify this polynomial, do so in the second
mask parameter field. The blocks represent a primitive polynomial using a
vector that lists the polynomial’s coefficients in order of ascending powers of
the variable. You can find generator polynomials for Galois fields using the
gfprimfd function in Communications System Toolbox.

If you do not want to specify a primitive polynomial, set the second mask
parameter to the value of K.

BCH Codes. For BCH codes, the codeword length N must have the form 2M-1,
where M is an integer between 3 and 9. The message length K is restricted to
particular values that depend on N. To see which values of K are valid for a
given N, see the reference page for the bchenc function in Communications
System Toolbox. No known analytic formula describes the relationship among
the codeword length, message length, and error-correction capability for
BCH codes.
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Error Information

The BCH Decoder block can also return error-related information during
the simulation. The optional second output signal indicates the number of
errors that the block detected in the input codeword. A negative integer in
the second output indicates that the block detected more errors than it could
correct using the coding scheme. If you do not want the block to create a
second output signal, clear Show number of errors in the block dialog box.

Reed-Solomon Codes. Reed-Solomon codes are useful for correcting errors
that occur in bursts. In the simplest case, the length of codewords in a
Reed-Solomon code is of the form N= 2M-1, where the 2M is the number of
symbols for the code. The error-correction capability of a Reed-Solomon code
is floor((N-K)/2), where K is the length of message words. The difference
N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N is
less than 2M-1. In this case, the encoder appends 2M-1-N zero symbols to each
message word and codeword. The error-correction capability of a shortened
Reed-Solomon code is also floor((N-K)/2)). The Communications System
Toolbox Reed-Solomon blocks can implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols

One difference between Reed-Solomon codes and the other codes supported in
this product is that Reed-Solomon codes process symbols in GF(2M) instead of
GF(2). Each such symbol is specified by M bits. The nonbinary nature of the
Reed-Solomon code symbols causes the Reed-Solomon blocks to differ from
other coding blocks in these ways:

• You can use the integer format, via the Integer-Input RS Encoder and
Integer-Output RS Decoder blocks.

• The binary format expects the vector lengths to be an integer multiple of
M*K (not K) for messages and the same integer M*N (not N) for codewords.
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Error Information

The Reed-Solomon decoding blocks (Binary-Output RS Decoder and
Integer-Output RS Decoder) return error-related information during the
simulation. The second output signal indicates the number of errors that the
block detected in the input codeword. A -1 in the second output indicates that
the block detected more errors than it could correct using the coding scheme.

Shortening, Puncturing, and Erasures
Many standards utilize punctured codes, and digital receivers can easily
output erasures. BCH and RS performance improves significantly in fading
channels where the receiver generates erasures.

A punctured codeword has only parity symbols removed, and a shortened
codeword has only information symbols removed. A codeword with erasures
can have those erasures in either information symbols or parity symbols.

Reed Solomon Examples with Shortening, Puncturing, and Erasures.
In this section, a representative example of Reed Solomon coding with
shortening, puncturing, and erasures is built with increasing complexity of
error correction.

Encoder Example with Shortening and Puncturing.

The following figure shows a representative example of a (7,3) Reed Solomon
encoder with shortening and puncturing.

3-32



Error Detection and Correction

Data
source

Add
zeros

Encode

Puncture
(1011)

Shorten

2-symbol
shortened
message

I1I2 0I1I2 0I1I2P1P2P3P4

I1I2P1P3P4 I1I2P1P2P3P4

3-symbol
message

RS Encoder with Shortening and Puncturing

(7, 3)

(6, 2)(5, 2)

In this figure, the message source outputs two information symbols,
designated by I1I2. (For a BCH example, the symbols are simply binary bits.)
Because the code is a shortened (7,3) code, a zero must be added ahead of the
information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is then RS encoded, and the added information zero is
subsequently removed, which yields a result of I1I2P1P2P3P4. (In this example,
the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this
case, is 1011. Within the puncture vector, a 1 means that the symbol is
kept, and a 0 means that the symbol is thrown away. In this example, the
puncturing operation removes the second parity symbol, yielding a final
vector of I1I2P1P3P4.

Decoder Example with Shortening and Puncturing.

The following figure shows how the RS encoder operates on a shortened and
punctured codeword.
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This case corresponds to the encoder operations shown in the figure of the RS
encoder with shortening and puncturing. As shown in the preceding figure,
the encoder receives a (5,2) codeword, because it has been shortened from a
(7,3) codeword by one symbol, and one symbol has also been punctured.

As a first step, the decoder adds an erasure, designated by E, in the second
parity position of the codeword. This corresponds to the puncture vector 1011.
Adding a zero accounts for shortening, in the same way as shown in the
preceding figure. The single erasure does not exceed the erasure-correcting
capability of the code, which can correct four erasures. The decoding operation
results in the three-symbol message DI1I2. The first symbol is truncated, as in
the preceding figure, yielding a final output of I1I2.

Encoder Example with Shortening, Puncturing, and Erasures.

The following figure shows the decoder operating on the punctured, shortened
codeword, while also correcting erasures generated by the receiver.
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Depuncture
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RS Encoder with Shortening, Puncturing, and Erasures

(7, 3)3-symbol
message

2-symbol
shortened
message

I1I2P1P3P4

(5, 2)

01001

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder
sent. The demodulator declares that two of the five received symbols are
unreliable enough to be erased, such that symbols 2 and 5 are deemed to be
erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be
replaced with an erasure symbol, and a 0 means that the symbol is passed
unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform
the erasures indicated by the vector 01001. Within the erasures vector, a 1
means that the symbol is to be replaced with an erasure symbol, and a 0
means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used
in the encoding operation (i.e., 1011). Thus, an erasure symbol is inserted
between P1 and P3, yielding a codeword vector of I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information
vector accounts for the shortening. The resulting vector is 0I1EP1EP3E, such
that a (7,3) codeword is sent to the Berlekamp algorithm.
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This codeword is decoded, yielding a three-symbol message of DI1I2 (where
D refers to a dummy symbol). Finally, the removal of the D symbol from the
message vector accounts for the shortening and yields the original I1I2 vector.

For additional information, see the Reed-Solomon Coding with Erasures,
Punctures, and Shortening product demo.

Reed-Solomon Code in Integer Format
To open an example model that uses a Reed-Solomon code in integer format,
type doc_rscoding at the MATLAB command line. For more information
about the model, see “Example: Reed-Solomon Code in Integer Format” on
page 3-26

Find a Generator Polynomial
To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code,
use the cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The
commands

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output
is below.

genpolyCyclic =

1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)
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Array elements =

1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector
that lists the polynomial’s coefficients in order of ascending powers of the
variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using
a Galois row vector that lists the polynomial’s coefficients in order of
descending powers of the variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field
GF(2). For more information on the meaning of these coefficients, see
“How Integers Correspond to Galois Field Elements” on page 3-120 and
“Polynomials over Galois Fields” on page 3-141.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine
the generator polynomial. The syntaxes for functions in the example above
also include options for retrieving generator polynomials that satisfy certain
constraints that you specify. See the functions’ reference pages for details
about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the
form (X - Ab)(X - Ab+1)...(X - Ab+2t-1), where A is a primitive element for an
appropriate Galois field, and b and t are integers. See the functions’ reference
pages for more information about this expression.

Performing Other Block Code Tasks
This section describes functions that compute typical parameters associated
with linear block codes, as well as functions that convert information from
one format to another. The topics are
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• “Error Correction Versus Error Detection for Linear Block Codes” on page
3-38

• “Finding the Error-Correction Capability” on page 3-38

• “Finding Generator and Parity-Check Matrices” on page 3-38

• “Converting Between Parity-Check and Generator Matrices” on page 3-39

Error Correction Versus Error Detection for Linear Block Codes. You

can use a liner block code to detect dmin -1 errors or to correct t =
1
2

1( )mind −⎡
⎣⎢

⎤
⎦⎥errors.

If you compromise the error correction capability of a code, you can detect
more than t errors. For example, a code with dmin = 7 can correct t = 3 errors
or it can detect up to 4 errors and correct up to 2 errors.

Finding the Error-Correction Capability. The bchgenpoly and rsgenpoly
functions can return an optional second output argument that indicates the
error-correction capability of a BCH or Reed-Solomon code. For example,
the commands

[g,t] = bchgenpoly(31,16);
t
t =

3

find that a [31, 16] BCH code can correct up to three errors in each codeword.

Finding Generator and Parity-Check Matrices. To find a parity-check
and generator matrix for a Hamming code with codeword length 2^m-1, use
the hammgen function as below. m must be at least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen
function. You must provide the codeword length and a valid generator
polynomial. You can use the cyclpoly function to produce one possible
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generator polynomial after you provide the codeword length and message
length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

Converting Between Parity-Check and Generator Matrices. The
gen2par function converts a generator matrix into a parity-check matrix, and
vice versa. The reference page for gen2par contains examples to illustrate
this.
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[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

[4] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd
ed., Cambridge, MA, MIT Press, 1972.

[5] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication
and Storage, Upper Saddle River, NJ, Prentice Hall, 1995.

[7] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA,
MIT Press, 1963.
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Convolutional Codes

• “Convolutional Code Features” on page 3-40
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• “Polynomial Description of a Convolutional Code” on page 3-41

• “Trellis Description of a Convolutional Code” on page 3-45

• “Create and Decode Convolutional Codes” on page 3-48

• “Design a Rate-2/3 Feedforward Encoder Using MATLAB” on page 3-57

• “Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 3-59

• “Puncture a Convolutional Code Using MATLAB” on page 3-63

• “Implement a Systematic Encoder with Feedback Using Simulink” on page
3-63

• “Soft-Decision Decoding” on page 3-65

• “Tailbiting Encoding Using Feedback Encoders” on page 3-71

• “Selected Bibliography for Convolutional Coding” on page 3-73

Convolutional Code Features
Convolutional coding is a special case of error-control coding. Unlike a block
coder, a convolutional coder is not a memoryless device. Even though a
convolutional coder accepts a fixed number of message symbols and produces
a fixed number of code symbols, its computations depend not only on the
current set of input symbols but on some of the previous input symbols.

Communications System Toolbox provides convolutional coding capabilities
as Simulink blocks, System objects, and MATLAB functions. This product
supports feedforward and feedback convolutional codes that can be described
by a trellis structure or a set of generator polynomials. It uses the Viterbi
algorithm to implement hard-decision and soft-decision decoding.

The product also includes an a posteriori probability decoder, which can be
used for soft output decoding of convolutional codes.

For background information about convolutional coding, see the works listed
in “Selected Bibliography for Convolutional Coding” on page 3-73.

Block Parameters for Convolutional Coding. To process convolutional
codes, use the Convolutional Encoder, Viterbi Decoder, and/or APP Decoder
blocks in the Convolutional sublibrary. If a mask parameter is required in
both the encoder and the decoder, use the same value in both blocks.
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The blocks in the Convolutional sublibrary assume that you use one of two
different representations of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and
modulo-2 adders, you can compute the code generator polynomial matrix
and subsequently use the poly2trellis function (in Communications
System Toolbox) to generate the corresponding trellis structure mask
parameter automatically. For an example, see “Design a Rate 2/3
Feedforward Encoder Using Simulink” on page 3-59.

• If you design your encoder using a trellis diagram, you can construct the
trellis structure in MATLAB and use it as the mask parameter.

Details about these representations are in the sections “Polynomial
Description of a Convolutional Code” on page 3-41 and “Trellis Description of
a Convolutional Code” on page 3-45 in the Communications System Toolbox
User’s Guide.

Using the Polynomial Description in Blocks

To use the polynomial description with the Convolutional Encoder, Viterbi
Decoder, or APP Decoder blocks, use the utility function poly2trellis
from Communications System Toolbox. This function accepts a polynomial
description and converts it into a trellis description. For example, the
following command computes the trellis description of an encoder whose
constraint length is 5 and whose generator polynomials are 35 and 31:

trellis = poly2trellis(5,[35 31]);

To use this encoder with one of the convolutional-coding blocks, simply place
a poly2trellis command such as

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

Polynomial Description of a Convolutional Code
A polynomial description of a convolutional encoder describes the connections
among shift registers and modulo 2 adders. For example, the figure below
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depicts a feedforward convolutional encoder that has one input, two outputs,
and two shift registers.
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A polynomial description of a convolutional encoder has either two or three
components, depending on whether the encoder is a feedforward or feedback
type:

• Constraint lengths

• Generator polynomials

• Feedback connection polynomials (for feedback encoders only)

Constraint Lengths. The constraint lengths of the encoder form a vector
whose length is the number of inputs in the encoder diagram. The elements of
this vector indicate the number of bits stored in each shift register, including
the current input bits.

In the figure above, the constraint length is three. It is a scalar because the
encoder has one input stream, and its value is one plus the number of shift
registers for that input.

Generator Polynomials. If the encoder diagram has k inputs and n
outputs, the code generator matrix is a k-by-n matrix. The element in the ith
row and jth column indicates how the ith input contributes to the jth output.

For systematic bits of a systematic feedback encoder, match the entry in
the code generator matrix with the corresponding element of the feedback
connection vector. See “Feedback Connection Polynomials” on page 3-43
below for details.
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In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where
a connection line from the shift register feeds into the adder, and a 0
elsewhere. The leftmost spot in the binary number represents the current
input, while the rightmost spot represents the oldest input that still
remains in the shift register.

2 Convert this binary representation into an octal representation by
considering consecutive triplets of bits, starting from the rightmost bit. The
rightmost bit in each triplet is the least significant. If the number of bits is
not a multiple of three, place zero bits at the left end as necessary. (For
example, interpret 1101010 as 001 101 010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower
adders in the figure above are 110 and 111, respectively. These binary
numbers are equivalent to the octal numbers 6 and 7, respectively, so the
generator polynomial matrix is [6 7].

Note You can perform the binary-to-octal conversion in MATLAB by using
code like str2num(dec2base(bin2dec('110'),8)).

For a table of some good convolutional code generators, refer to [2] in the
section “Selected Bibliography for Block Coding” on page 3-39, especially
that book’s appendices.

Feedback Connection Polynomials. If you are representing a feedback
encoder, you need a vector of feedback connection polynomials. The length
of this vector is the number of inputs in the encoder diagram. The elements
of this vector indicate the feedback connection for each input, using an octal
format. First build a binary number representation as in step 1 above. Then
convert the binary representation into an octal representation as in step 2
above.

If the encoder has a feedback configuration and is also systematic, the
code generator and feedback connection parameters corresponding to the
systematic bits must have the same values.
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For example, the diagram below shows a rate 1/2 systematic encoder with
feedback.
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This encoder has a constraint length of 5, a generator polynomial matrix of
[37 33], and a feedback connection polynomial of 37.

The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits. The feedback
polynomial is represented by the binary vector [1 1 1 1 1], corresponding to the
upper row of binary digits in the diagram. These digits indicate connections
from the outputs of the registers to the adder. The initial 1 corresponds to the
input bit. The octal representation of the binary number 11111 is 37.

The second generator polynomial is represented by the binary vector [1 1 0
1 1], corresponding to the lower row of binary digits in the diagram. The octal
number corresponding to the binary number 11011 is 33.

Using the Polynomial Description in MATLAB. To use the polynomial
description with the functions convenc and vitdec, first convert it into
a trellis description using the poly2trellis function. For example, the
command below computes the trellis description of the encoder pictured in the
section “Polynomial Description of a Convolutional Code” on page 3-41.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc
and vitdec.
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Trellis Description of a Convolutional Code
A trellis description of a convolutional encoder shows how each possible input
to the encoder influences both the output and the state transitions of the
encoder. This section describes trellises, and how to represent trellises in
MATLAB, and gives an example of a MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the
previous section. The encoder has four states (numbered in binary from 00 to
11), a one-bit input, and a two-bit output. (The ratio of input bits to output
bits makes this encoder a rate-1/2 encoder.) Each solid arrow shows how the
encoder changes its state if the current input is zero, and each dashed arrow
shows how the encoder changes its state if the current input is one. The octal
numbers above each arrow indicate the current output of the encoder.
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As an example of interpreting this trellis diagram, if the encoder is in the 10
state and receives an input of zero, it outputs the code symbol 3 and changes
to the 01 state. If it is in the 10 state and receives an input of one, it outputs
the code symbol 0 and changes to the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent
to some trellis description, although some trellises have no corresponding
polynomial descriptions.
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Specifying a Trellis in MATLAB. To specify a trellis in MATLAB, use a
specific form of a MATLAB structure called a trellis structure. A trellis
structure must have five fields, as in the table below.

Fields of a Trellis Structure for a Rate k/n Code

Field in Trellis
Structure

Dimensions Meaning

numInputSymbols Scalar Number of input
symbols to the encoder:
2k

numOutputsymbols Scalar Number of output
symbols from the
encoder: 2n

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2k

matrix
Next states for all
combinations of current
state and current input

outputs numStates-by-2k

matrix
Outputs (in octal) for all
combinations of current
state and current input

Note While your trellis structure can have any name, its fields must have
the exact names as in the table. Field names are case sensitive.

In the nextStates matrix, each entry is an integer between 0 and
numStates-1. The element in the ith row and jth column denotes the
next state when the starting state is i-1 and the input bits have decimal
representation j-1. To convert the input bits to a decimal value, use the first
input bit as the most significant bit (MSB). For example, the second column
of the nextStates matrix stores the next states when the current set of
input values is {0,...,0,1}. To learn how to assign numbers to states, see the
reference page for istrellis.
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In the outputs matrix, the element in the ith row and jth column denotes
the encoder’s output when the starting state is i-1 and the input bits have
decimal representation j-1. To convert to decimal value, use the first output
bit as the MSB.

How to Create a MATLAB Trellis Structure. Once you know what
information you want to put into each field, you can create a trellis structure
in any of these ways:

• Define each of the five fields individually, using structurename.fieldname
notation. For example, set the first field of a structure called s using the
command below. Use additional commands to define the other fields.

s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.

• Collect all field names and their values in a single struct command. For
example:

s = struct('numInputSymbols',2,'numOutputSymbols',2,...
'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the
poly2trellis function to convert it to a valid trellis structure. The
polynomial description of a convolutional encoder is described in
“Polynomial Description of a Convolutional Code” on page 3-41.

To check whether your structure is a valid trellis structure, use the istrellis
function.

Example: A MATLAB Trellis Structure. Consider the trellis shown below.
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To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types
of input path: the solid arrow and the dashed arrow. The number of output
symbols is 4 because the numbers above the arrows can be either 0, 1, 2, or 3.
The number of states is 4 because there are four bullets on the left side of the
trellis diagram (equivalently, four on the right side). To compute the matrix
of next states, create a matrix whose rows correspond to the four current
states on the left side of the trellis, whose columns correspond to the inputs of
0 and 1, and whose elements give the next states at the end of the arrows on
the right side of the trellis. To compute the matrix of outputs, create a matrix
whose rows and columns are as in the next states matrix, but whose elements
give the octal outputs shown above the arrows in the trellis.

Create and Decode Convolutional Codes
The functions for encoding and decoding convolutional codes are convenc and
vitdec. This section discusses using these functions to create and decode
convolutional codes.
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Encoding. A simple way to use convenc to create a convolutional code is
shown in the commands below.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.

The first command converts a polynomial description of a feedforward
convolutional encoder to the corresponding trellis description. The second
command encodes 100 bits, or 50 two-bit symbols. Because the code rate in
this example is 2/3, the output vector code contains 150 bits (that is, 100
input bits times 3/2).

To check whether your trellis corresponds to a catastrophic convolutional
code, use the iscatastrophic function.

Hard-Decision Decoding. To decode using hard decisions, use the vitdec
function with the flag 'hard' and with binary input data. Because the output
of convenc is binary, hard-decision decoding can use the output of convenc
directly, without additional processing. This example extends the previous
example and implements hard-decision decoding.

t = poly2trellis([4 3],[4 5 17;7 4 2]); % Define trellis.
code = convenc(ones(100,1),t); % Encode a string of ones.
tb = 2; % Traceback length for decoding
decoded = vitdec(code,t,tb,'trunc','hard'); % Decode.

Soft-Decision Decoding. To decode using soft decisions, use the vitdec
function with the flag 'soft'. Specify the number, nsdec, of soft-decision bits
and use input data consisting of integers between 0 and 2^nsdec-1.

An input of 0 represents the most confident 0, while an input of 2^nsdec-1
represents the most confident 1. Other values represent less confident
decisions. For example, the table below lists interpretations of values for
3-bit soft decisions.
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Input Values for 3-bit Soft Decisions

Input Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1

Implement Soft-Decision Decoding Using MATLAB

The script below illustrates decoding with 3-bit soft decisions. First it creates
a convolutional code with convenc and adds white Gaussian noise to the code
with awgn. Then, to prepare for soft-decision decoding, the example uses
quantiz to map the noisy data values to appropriate decision-value integers
between 0 and 7. The second argument in quantiz is a partition vector that
determines which data values map to 0, 1, 2, etc. The partition is chosen so
that values near 0 map to 0, and values near 1 map to 7. (You can refine the
partition to obtain better decoding performance if your application requires
it.) Finally, the example decodes the code and computes the bit error rate.
When comparing the decoded data with the original message, the example
must take the decoding delay into account. The continuous operation mode of
vitdec causes a delay equal to the traceback length, so msg(1) corresponds
to decoded(tblen+1) rather than to decoded(1).

msg = randint(4000,1,2,139); % Random data
t = poly2trellis(7,[171 133]); % Define trellis.
code = convenc(msg,t); % Encode the data.
ncode = awgn(code,6,'measured',244); % Add noise.

% Quantize to prepare for soft-decision decoding.
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qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length
decoded = vitdec(qcode,t,tblen,'cont','soft',3); % Decode.

% Compute bit error rate.
[number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay))

The output is below.

number =

5

ratio =

0.0013

Implement Soft-Decision Decoding Using Simulink. This example
creates a rate 1/2 convolutional code. It uses a quantizer and the Viterbi
Decoder block to perform soft-decision decoding. To open the model, enter
doc_softdecision at the MATLAB command line. For a description of the
model, see Overview of the Simulation.

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.
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The encoder’s constraint length is a scalar since the encoder has one input.
The value of the constraint length is the number of bits stored in the shift
register, including the current input. There are six memory registers, and the
current input is one bit. Thus the constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder
has one input and two outputs. The first element in the matrix indicates
which input values contribute to the first output, and the second element in
the matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of
the rightmost and the four leftmost elements in the diagram’s array of input
values. The seven-digit binary number 1111001 captures this information,
and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of
bits uses the leftmost bit as the most significant bit. The second output
corresponds to the binary number 1011011, which is equivalent to the octal
number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the
block which code to use when processing data. In this case, the poly2trellis
function, in Communications System Toolbox, converts the constraint length
and the pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar
bit stream, the encoded data leaving the block is a stream of binary vectors
of length 2.
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Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of
complex numbers that are close to -1 and 1. In order to reconstruct the original
binary message, the receiver part of the model must decode the convolutional
code. The Viterbi Decoder block in this model expects its input data to be
integers between 0 and 7. The demodulator, a custom subsystem in this
model, transforms the received data into a format that the Viterbi Decoder
block can interpret properly. More specifically, the demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary
part. It is reasonable to assume that the imaginary part of the received
data does not contain essential information, because the imaginary part of
the transmitted data is zero (ignoring small roundoff errors) and because
the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the
noise estimate and then multiplying by -1.

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block’s decision
mapping reverses the BPSK modulation that the BPSK Modulator Baseband
block performs on the transmitting side of this model. To examine the
demodulator subsystem in more detail, double-click the icon labeled
Soft-Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit
decision values, the Viterbi Decoder block decodes it. The block uses a
soft-decision algorithm with 23 different input values because the Decision
type parameter is Soft Decision and the Number of soft decision bits
parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi
Decoder block requires input values between 0 and 2b-1, where b is the
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Number of soft decision bits parameter. The block interprets 0 as the most
confident decision that the codeword bit is a 0 and interprets 2b-1 as the most
confident decision that the codeword bit is a 1. The values in between these
extremes represent less confident decisions. The following table lists the
interpretations of the eight possible input values for this example.

Decision Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1

Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents
the length of the decoding delay. Typical values for a traceback depth are
about five or six times the constraint length, which would be 35 or 42 in this
example. However, some hardware implementations offer options of 48 and
96. This example chooses 48 because that is closer to the targets (35 and
42) than 96 is.

Delay in Received Data

The Error Rate Calculation block’s Receive delay parameter is nonzero
because a given message bit and its corresponding recovered bit are separated
in time by a nonzero amount of simulation time. The Receive delay
parameter tells the block which elements of its input signals to compare when
checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (49).
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Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation
with the bit error rate that would theoretically result from unquantized
decoding. The process includes a few steps, described in these sections:

Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional
code in this model, you can use this estimate based on unquantized-decision
decoding:

P c Pb d d
d f

<
=

∞

∑

In this estimate, cd is the sum of bit errors for error events of distance d,
and f is the free distance of the code. The quantity Pd is the pairwise error
probability, given by
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where R is the code rate of 1/2, and erfc is the MATLAB complementary
error function, defined by

erfc( )x e dtt

x

= −
∞

∫
2 2

π

Values for the coefficients cd and the free distance f are in published articles
such as . The free distance for this code is f = 10.

The following commands calculate the values of Pb for Eb/N0 values in the
range from 1 to 3.5, in increments of 0.5:
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Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function
to run the simulation from the MATLAB command line. For example,
the following code calculates the bit error rate at bit energy-to-noise ratios
ranging from 1 dB to 4 dB, in increments of 0.5 dB. It collects all bit error
rates from these simulations in the matrix BERVec. It also plots the bit error
rates in a figure window along with the theoretical bounds computed in the
preceding code fragment.

Note First open the model by clicking here in the MATLAB Help browser.
Then execute these commands, which might take a few minutes.

Note The estimate for Pb assumes that the decoder uses unquantized data,
that is, an infinitely fine quantization. By contrast, the simulation in this
example uses 8-level (3-bit) quantization. Because of this quantization,
the simulated bit error rate is not quite as low as the bound when the
signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of
your actual BER points might vary because the simulation involves random
numbers.
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Design a Rate-2/3 Feedforward Encoder Using MATLAB
The example below uses the rate 2/3 feedforward encoder depicted in this
schematic. The accompanying description explains how to determine the
trellis structure parameter from a schematic of the encoder and then how to
perform coding using this encoder.
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Determining Coding Parameters

The convenc and vitdec functions can implement this code if their
parameters have the appropriate values.

The encoder’s constraint length is a vector of length 2 because the encoder has
two inputs. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits. Counting memory spaces
in each shift register in the diagram and adding one for the current inputs
leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how the
ith input contributes to the jth output. For example, to compute the element
in the second row and third column, the leftmost and two rightmost elements
in the second shift register of the diagram feed into the sum that forms the
third output. Capture this information as the binary number 1011, which
is equivalent to the octal number 13. The full value of the code generator
matrix is [23 35 0; 0 5 13].
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To use the constraint length and code generator parameters in the convenc
and vitdec functions, use the poly2trellis function to convert those
parameters into a trellis structure. The command to do this is below.

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Define trellis.

Using the Encoder

Below is a script that uses this encoder.

len = 1000;
msg = randint(2*len,1); % Random binary message of 2-bit symbols
trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Trellis
code = convenc(msg,trel); % Encode the message.
ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.
decoded = vitdec(ncode,trel,34,'cont','hard'); % Decode.
[number,ratio] = biterr(decoded(68+1:end),msg(1:end-68));

convenc accepts a vector containing 2-bit symbols and produces a vector
containing 3-bit symbols, while vitdec does the opposite. Also notice that
biterr ignores the first 68 elements of decoded. That is, the decoding delay is
68, which is the number of bits per symbol (2) of the recovered message times
the traceback depth value (34) in the vitdec function. The first 68 elements of
decoded are 0s, while subsequent elements represent the decoded messages.

Design a Rate 2/3 Feedforward Encoder Using Simulink
This example uses the rate 2/3 feedforward convolutional encoder depicted in
the following figure. The description explains how to determine the coding
blocks’ parameters from a schematic of a rate 2/3 feedforward encoder. This
example also illustrates the use of the Error Rate Calculation block with
a receive delay.
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How to Determine Coding Parameters. The Convolutional Encoder and
Viterbi Decoder blocks can implement this code if their parameters have
the appropriate values.

The encoder’s constraint length is a vector of length 2 since the encoder has
two inputs. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits. Counting memory spaces
in each shift register in the diagram and adding one for the current inputs
leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how
the ith input contributes to the jth output. For example, to compute the
element in the second row and third column, notice that the leftmost and two
rightmost elements in the second shift register of the diagram feed into the
sum that forms the third output. Capture this information as the binary
number 1011, which is equivalent to the octal number 13. The full value of
the code generator matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the
Convolutional Encoder and Viterbi Decoder blocks, use the poly2trellis
function to convert those parameters into a trellis structure.
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How to Simulate the Encoder. The following model simulates this encoder.

To open the completed model, enter doc_convcoding at the MATLAB
command line. To build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Set Sample time to .5.

- Check the Frame-based outputs check box.

- Set Samples per frame to 2.

• Convolutional Encoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

• Binary Symmetric Channel, in the Channels library

- Set Error probability to 0.02.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Clear the Output error vector check box.

• Viterbi Decoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

- Set Decision type to Hard decision.

• Error Rate Calculation, in the Comm Sinks library
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- Set Receive delay to 68.

- Set Output data to Port.

- Check the Stop simulation check box.

- Set Target number of errors to 100.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for
three entries.

Connect the blocks as in the figure. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to inf.

Notes on the Model. The matrix size annotations appear on the connecting
lines only if you select Signal Dimensions from the Port/Signal Displays
submenu of the model’s Format menu. The encoder accepts a 2-by-1
column vector and produces a 3-by-1 column vector, while the decoder does
the opposite. The Samples per frame parameter in the Bernoulli Binary
Generator block is 2 because the block must generate a message word of
length 2.

The Receive delay parameter in the Error Rate Calculation block is 68,
which is the vector length (2) of the recovered message times the Traceback
depth value (34) in the Viterbi Decoder block. If you examine the transmitted
and received signals as matrices in the MATLAB workspace, you see that the
first 34 rows of the recovered message consist of zeros, while subsequent
rows are the decoded messages. Thus the delay in the received signal is 34
vectors of length 2, or 68 samples.

Running the model produces display output consisting of three numbers: the
error rate, the total number of errors, and the total number of comparisons
that the Error Rate Calculation block makes during the simulation. (The first
two numbers vary depending on your Initial seed values in the Bernoulli
Binary Generator and Binary Symmetric Channel blocks.) The simulation
stops after 100 errors occur, because Target number of errors is set to 100
in the Error Rate Calculation block. The error rate is much less than 0.02,
the Error probability in the Binary Symmetric Channel block.
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Puncture a Convolutional Code Using MATLAB
This example processes a punctured convolutional code. It begins by
generating 30,000 random bits and encoding them using a rate-3/4
convolutional encoder with a puncture pattern of [1 1 1 0 0 1]. The resulting
vector contains 40,000 bits, which are mapped to values of -1 and 1 for
transmission. The punctured code, punctcode, passes through an additive
white Gaussian noise channel. Then vitdec decodes the noisy vector using
the 'unquant' decision type.

Finally, the example computes the bit error rate and the number of bit errors.

len = 30000; msg = randi([0 1], len, 1); % Random data
t = poly2trellis(7, [133 171]); % Define trellis.
punctcode = convenc(msg, t, [1 1 1 0 0 1]); % Length is (2*len)*2/3.
tcode = 1-2*punctcode; % Map "0" bit to 1 and "1" bit to -1
ncode = awgn(tcode, 3, 'measured'); % Add noise.

% Decode the punctured code
decoded = vitdec(ncode, t, 96, 'trunc', ...
'unquant', [1 1 1 0 0 1]); % Decode.
[numErrP, berP] = biterr(decoded, msg); % Bit error rate

% Erase the least reliable 100 symbols, then decode
[dummy idx] = sort(abs(ncode));
erasures = zeros(size(ncode)); erasures(idx(1:100)) = 1;
decoded = vitdec(ncode, t, 96, 'trunc', 'unquant', ...
[1 1 1 0 0 1], erasures); % Decode.
[numErrPE, berPE] = biterr(decoded, msg); % Bit error rate

fprintf('Number of errors with puncturing: %d\n', numErrP)
fprintf('Number of errors with puncturing and erasures: %d\n', numErrPE)

Implement a Systematic Encoder with Feedback Using Simulink
This section explains how to use the Convolutional Encoder block to
implement a systematic encoder with feedback. A code is systematic if the
actual message words appear as part of the codewords. The following diagram
shows an example of a systematic encoder.

3-63



3 System Design

��� ������ ���

��������%�&%�

'������%�&%��(����������)

#�&%�

� � ���

� � � � �

�

�

To implement this encoder, set the Trellis structure parameter in the
Convolutional Encoder block to poly2trellis(5, [37 33], 37). This
setting corresponds to

• Constraint length: 5

• Generator polynomial pair: [37 33]

• Feedback polynomial: 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1],
corresponding to the upper row of binary digits. These digits indicate
connections from the outputs of the registers to the adder. The initial 1
corresponds to the input bit. The octal representation of the binary number
11111 is 37.

To implement a systematic code, set the first generator polynomial to be the
same as the feedback polynomial in the Trellis structure parameter of the
Convolutional Encoder block. In this example, both polynomials have the
octal representation 37.

The second generator polynomial is represented by the binary vector [1 1
0 1 1], corresponding to the lower row of binary digits. The octal number
corresponding to the binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional
Encoder block, see “Polynomial Description of a Convolutional Code” on page
3-41 in the Communications System Toolbox documentation.
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Soft-Decision Decoding
This example creates a rate 1/2 convolutional code. It uses a quantizer and
the Viterbi Decoder block to perform soft-decision decoding. This description
covers these topics:

• “Overview of the Simulation” on page 3-65

• “Defining the Convolutional Code” on page 3-66

• “Mapping the Received Data” on page 3-67

• “Decoding the Convolutional Code” on page 3-68

• “Delay in Received Data” on page 3-69

• “Comparing Simulation Results with Theoretical Results” on page 3-69

Overview of the Simulation. The model is in the following figure. To open
the model, enter doc_softdecision at the MATLAB command line. The
simulation creates a random binary message signal, encodes the message into
a convolutional code, modulates the code using the binary phase shift keying
(BPSK) technique, and adds white Gaussian noise to the modulated data in
order to simulate a noisy channel. Then, the simulation prepares the received
data for the decoding block and decodes. Finally, the simulation compares
the decoded information with the original message signal in order to compute
the bit error rate. The simulation ends after processing 100 bit errors or 107

message bits, whichever comes first.
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Defining the Convolutional Code. The feedforward convolutional encoder
in this example is depicted below.
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The encoder’s constraint length is a scalar since the encoder has one input.
The value of the constraint length is the number of bits stored in the shift
register, including the current input. There are six memory registers, and the
current input is one bit. Thus the constraint length of the code is 7.
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The code generator is a 1-by-2 matrix of octal numbers because the encoder
has one input and two outputs. The first element in the matrix indicates
which input values contribute to the first output, and the second element in
the matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of
the rightmost and the four leftmost elements in the diagram’s array of input
values. The seven-digit binary number 1111001 captures this information,
and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of
bits uses the leftmost bit as the most significant bit. The second output
corresponds to the binary number 1011011, which is equivalent to the octal
number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the
block which code to use when processing data. In this case, the poly2trellis
function, in Communications Toolbox, converts the constraint length and the
pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar
bit stream, the encoded data leaving the block is a stream of binary vectors
of length 2.

Mapping the Received Data. The received data, that is, the output of the
AWGN Channel block, consists of complex numbers that are close to -1 and 1.
In order to reconstruct the original binary message, the receiver part of the
model must decode the convolutional code. The Viterbi Decoder block in this
model expects its input data to be integers between 0 and 7. The demodulator,
a custom subsystem in this model, transforms the received data into a format
that the Viterbi Decoder block can interpret properly. More specifically, the
demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary
part. It is reasonable to assume that the imaginary part of the received
data does not contain essential information, because the imaginary part of
the transmitted data is zero (ignoring small roundoff errors) and because
the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the
noise estimate and then multiplying by -1.
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• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block’s decision
mapping reverses the BPSK modulation that the BPSK Modulator Baseband
block performs on the transmitting side of this model. To examine the
demodulator subsystem in more detail, double-click the icon labeled
Soft-Output BPSK Demodulator.

Decoding the Convolutional Code. After the received data is properly
mapped to length-2 vectors of 3-bit decision values, the Viterbi Decoder block
decodes it. The block uses a soft-decision algorithm with 23 different input
values because the Decision type parameter is Soft Decision and the
Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi
Decoder block requires input values between 0 and 2b-1, where b is the
Number of soft decision bits parameter. The block interprets 0 as the most
confident decision that the codeword bit is a 0 and interprets 2b-1 as the most
confident decision that the codeword bit is a 1. The values in between these
extremes represent less confident decisions. The following table lists the
interpretations of the eight possible input values for this example.

Decision Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1
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Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents
the length of the decoding delay. Typical values for a traceback depth are
about five or six times the constraint length, which would be 35 or 42 in this
example. However, some hardware implementations offer options of 48 and
96. This example chooses 48 because that is closer to the targets (35 and
42) than 96 is.

Delay in Received Data. The Error Rate Calculation block’s Receive delay
parameter is nonzero because a given message bit and its corresponding
recovered bit are separated in time by a nonzero amount of simulation time.
The Receive delay parameter tells the block which elements of its input
signals to compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (49).

Comparing Simulation Results with Theoretical Results. This section
describes how to compare the bit error rate in this simulation with the bit
error rate that would theoretically result from unquantized decoding. The
process includes a few steps, described in these sections:

Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional
code in this model, you can use this estimate based on unquantized-decision
decoding:

P c Pb d d
d f

<
=

∞

∑

In this estimate, cd is the sum of bit errors for error events of distance d,
and f is the free distance of the code. The quantity Pd is the pairwise error
probability, given by
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where R is the code rate of 1/2, and erfc is the MATLAB complementary
error function, defined by
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Values for the coefficients cd and the free distance f are in published articles
such as Frenger, P., P. Orten, and Ottosson, “Convolutional Codes with
Optimum Distance Spectrum,” IEEE Communications vol. 3, pp. 317-319,
November 1999. The free distance for this code is f = 10.

The following commands calculate the values of Pb for Eb/N0 values in the
range from 1 to 3.5, in increments of 0.5:

Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function
to run the simulation from the MATLAB command line. For example,
the following code calculates the bit error rate at bit energy-to-noise ratios
ranging from 1 dB to 4 dB, in increments of 0.5 dB. It collects all bit error
rates from these simulations in the matrix BERVec. It also plots the bit error
rates in a figure window along with the theoretical bounds computed in the
preceding code fragment.

Note First open the model by clicking here in the MATLAB Help browser.
Then execute these commands, which might take a few minutes.
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Note The estimate for Pb assumes that the decoder uses unquantized data,
that is, an infinitely fine quantization. By contrast, the simulation in this
example uses 8-level (3-bit) quantization. Because of this quantization,
the simulated bit error rate is not quite as low as the bound when the
signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of
your actual BER points might vary because the simulation involves random
numbers.

Tailbiting Encoding Using Feedback Encoders
This example demonstrates Tailbiting encoding using feedback encoders. For
feedback encoders, the ending state depends on the entire block of data. To
accomplish tailbiting, you must calculate for a given information vector (of N
bits), the initial state, that leads to the same ending state after the block of
data is encoded.
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This is achieved in two steps:

• The first step is to determine the zero-state response for a given block of
data. The encoder starts in the all-zeros state. The whole block of data is
input and the output bits are ignored. After N bits, the encoder is in a state
XN

[zs]. From this state, we calculate the corresponding initial state X0
and initialize the encoder with X0.

• The second step is the actual encoding. The encoder starts with the initial
state X0, the data block is input and a valid codeword is output which
conforms to the same state boundary condition.

Refer to [8] for a theoretical calculation of the initial state X0 from XN
[zs]

using state-space formulation. This is a one-time calculation which depends
on the block length and in practice could be implemented as a look-up table.
Here we determine this mapping table by simulating all possible entries for a
chosen trellis and block length.

To open the model, type doc_mtailbiting_wfeedback at the MATLAB
command line.

function mapStValues = getMapping(blkLen, trellis)
% The function returns the mapping value for the given block
length and trellis to be used for determining the initial
state from the zero-state response.

% All possible combinations of the mappings
mapStValuesTab = perms(0:trellis.numStates-1);
opts = simset('SrcWorkspace', 'Current', 'DstWorkspace', 'Current');

% Loop over all the combinations of the mapping entries:
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for i = 1:length(mapStValuesTab)
mapStValues = mapStValuesTab(i,:);

% Model parameterized for the Block length
sim('mtailbiting_wfeedback', [], opts);

% Check the boundary condition for each run
% if ending and starting states match, choose that mapping set
if unique(out)==0

return
end

end

Selecting the returned mapStValues for the Table data parameter of the
Direct Lookup Table (n-D) block in the Lookup subsystem will perform
tailbiting encoding for the chosen block length and trellis.

Selected Bibliography for Convolutional Coding

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum Press, 1992.

Linear Block Codes

• “Represent Words for Linear Block Codes” on page 3-73

• “Configure Parameters for Linear Block Codes” on page 3-77

• “Create and Decode Linear Block Codes” on page 3-82

Represent Words for Linear Block Codes
The cyclic, Hamming, and generic linear block code functionality in this
product offers you multiple ways to organize bits in messages or codewords.
These topics explain the available formats:
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• “Use MATLAB to Create Messages and Codewords in Binary Vector
Format” on page 3-74

• “Use MATLAB to Create Messages and Codewords in Binary Matrix
Format” on page 3-76

• “Use MATLAB to Create Messages and Codewords in Decimal Vector
Format” on page 3-76

To learn how to represent words for BCH or Reed-Solomon codes, see
“Represent Words for BCH Codes” on page 3-95 or “Represent Words for
Reed-Solomon Codes” on page 3-102.

Use MATLAB to Create Messages and Codewords in Binary Vector
Format. Your messages and codewords can take the form of vectors
containing 0s and 1s. For example, messages and codes might look like msg
and code in the lines below.

n = 6; k = 4; % Set codeword length and message length
% for a [6,4] code.
msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.
code = encode(msg,n,k,'cyclic'); % Code will be a binary column.
msg'
code'
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The output is below.

ans =

Columns 1 through 5

1 0 0 1 1

Columns 6 through 10

0 1 0 1 0

Columns 11 through 12

1 1

ans =

Columns 1 through 5

1 1 1 0 0

Columns 6 through 10

1 0 0 1 0

Columns 11 through 15

1 0 0 1 1

Columns 16 through 18

0 1 1

In this example, msg consists of 12 entries, which are interpreted as three
4-digit (because k = 4) messages. The resulting vector code comprises three
6-digit (because n = 6) codewords, which are concatenated to form a vector of
length 18. The parity bits are at the beginning of each codeword.
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Use MATLAB to Create Messages and Codewords in Binary Matrix
Format. You can organize coding information so as to emphasize the
grouping of digits into messages and codewords. If you use this approach,
each message or codeword occupies a row in a binary matrix. The example
below illustrates this approach by listing each 4-bit message on a distinct row
in msg and each 6-bit codeword on a distinct row in code.

n = 6; k = 4; % Set codeword length and message length.
msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.
code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.
msg
code

The output is below.

msg =

1 0 0 1
1 0 1 0
1 0 1 1

code =

1 1 1 0 0 1
0 0 1 0 1 0
0 1 1 0 1 1

Note In the binary matrix format, the message matrix must have k columns.
The corresponding code matrix has n columns. The parity bits are at the
beginning of each row.

Use MATLAB to Create Messages and Codewords in Decimal
Vector Format. Your messages and codewords can take the form of
vectors containing integers. Each element of the vector gives the decimal
representation of the bits in one message or one codeword.
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Note If 2^n or 2^k is very large, you should use the default binary format
instead of the decimal format. This is because the function uses a binary
format internally, while the roundoff error associated with converting many
bits to large decimal numbers and back might be substantial.

Note When you use the decimal vector format, encode expects the leftmost
bit to be the least significant bit.

The syntax for the encode command must mention the decimal format
explicitly, as in the example below. Notice that /decimal is appended to the
fourth argument in the encode command.

n = 6; k = 4; % Set codeword length and message length.
msg = [9;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.
code = encode(msg,n,k,'cyclic/decimal')

The output is below.

code =

39
20
54

Note The three examples above used cyclic coding. The formats for messages
and codes are similar for Hamming and generic linear block codes.

Configure Parameters for Linear Block Codes
This subsection describes the items that you might need in order to process
[n,k] cyclic, Hamming, and generic linear block codes. The table below lists
the items and the coding techniques for which they are most relevant.
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Parameters Used in Block Coding Techniques

Parameter Block Coding Technique

“Generator Matrix” on page 3-78 Generic linear block

“Parity-Check Matrix” on page 3-78 Generic linear block

“Generator Polynomial” on page 3-80 Cyclic

“Decoding Table” on page 3-81 Generic linear block, Hamming

Generator Matrix. The process of encoding a message into an [n,k] linear
block code is determined by a k-by-n generator matrix G. Specifically, the
1-by-k message vector v is encoded into the 1-by-n codeword vector vG. If G
has the form [Ik P] or [P Ik], where P is some k-by-(n-k) matrix and Ik is the
k-by-k identity matrix, G is said to be in standard form. (Some authors, e.g.,
Clark and Cain [2], use the first standard form, while others, e.g., Lin and
Costello [3], use the second.) Most functions in this toolbox assume that a
generator matrix is in standard form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check
Matrix” on page 3-78.

Parity-Check Matrix. Decoding an [n,k] linear block code requires an
(n-k)-by-n parity-check matrix H. It satisfies GHtr = 0 (mod 2), where Htr

denotes the matrix transpose of H, G is the code’s generator matrix, and this
zero matrix is k-by-(n-k). If G = [Ik P] then H = [-Ptr In-k]. Most functions in
this product assume that a parity-check matrix is in standard form when you
use it as an input argument.

The table below summarizes the standard forms of the generator and
parity-check matrices for an [n,k] binary linear block code.

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n

Parity-check [-P' In-k] or [In-k -P' ] (n-k)-by-n

3-78



Error Detection and Correction

Ik is the identity matrix of size k and the ' symbol indicates matrix transpose.
(For binary codes, the minus signs in the parity-check form listed above are
irrelevant; that is, -1 = 1 in the binary field.)

Examples

In the command below, parmat is a parity-check matrix and genmat is a
generator matrix for a Hamming code in which [n,k] = [23-1, n-3] = [7,4].
genmat has the standard form [P Ik].

[parmat,genmat] = hammgen(3)
parmat =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

genmat =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic
code. The cyclpoly function is mentioned below in “Generator Polynomial”
on page 3-80.

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)
parmat =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

genmat =
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1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

The example below converts a generator matrix for a [5,3] linear block code
into the corresponding parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];
parmat = gen2par(genmat)

parmat =

1 1 0 1 0
0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a
generator matrix.

Generator Polynomial. Cyclic codes have algebraic properties that allow
a polynomial to determine the coding process completely. This so-called
generator polynomial is a degree-(n-k) divisor of the polynomial xn-1. Van Lint
[5] explains how a generator polynomial determines a cyclic code.

The cyclpoly function produces generator polynomials for cyclic codes.
cyclpoly represents a generator polynomial using a row vector that lists
the polynomial’s coefficients in order of ascending powers of the variable.
For example, the command

genpoly = cyclpoly(7,3)

genpoly =

1 0 1 1 1

finds that one valid generator polynomial for a [7,3] cyclic code is
1 + x2 + x3 + x4.
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Decoding Table. A decoding table tells a decoder how to correct errors that
might have corrupted the code during transmission. Hamming codes can
correct any single-symbol error in any codeword. Other codes can correct,
or partially correct, errors that corrupt more than one symbol in a given
codeword.

This toolbox represents a decoding table as a matrix with n columns and
2^(n-k) rows. Each row gives a correction vector for one received codeword
vector. A Hamming decoding table has n+1 rows. The syndtable function
generates a decoding table for a given parity-check matrix.

Use a Decoding Table in MATLAB

The script below shows how to use a Hamming decoding table to correct an
error in a received message. The hammgen function produces the parity-check
matrix, while the syndtable function produces the decoding table. The
transpose of the parity-check matrix is multiplied on the left by the received
codeword, yielding the syndrome. The decoding table helps determine the
correction vector. The corrected codeword is the sum (modulo 2) of the
correction vector and the received codeword.

% Use a [7,4] Hamming code.
m = 3; n = 2^m-1; k = n-m;
parmat = hammgen(m); % Produce parity-check matrix.
trt = syndtable(parmat); % Produce decoding table.
recd = [1 0 0 1 1 1 1] % Suppose this is the received vector.
syndrome = rem(recd * parmat',2);
syndrome_de = bi2de(syndrome,'left-msb'); % Convert to decimal.
disp(['Syndrome = ',num2str(syndrome_de),...

' (decimal), ',num2str(syndrome),' (binary)'])
corrvect = trt(1+syndrome_de,:) % Correction vector
% Now compute the corrected codeword.
correctedcode = rem(corrvect+recd,2)

The output is below.

recd =

1 0 0 1 1 1 1
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Syndrome = 3 (decimal), 0 1 1 (binary)

corrvect =

0 0 0 0 1 0 0

correctedcode =

1 0 0 1 0 1 1

Create and Decode Linear Block Codes
The functions for encoding and decoding cyclic, Hamming, and generic linear
block codes are encode and decode. This section discusses how to use these
functions to create and decode generic linear block codes, cyclic codes, and
Hamming codes.

Generic Linear Block Codes. Encoding a message using a generic linear
block code requires a generator matrix. If you have defined variables msg, n,
k, and genmat, either of the commands

code = encode(msg,n,k,'linear',genmat);
code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix
genmat determines. The /decimal option, suitable when 2^n and 2^k are not
very large, indicates that msg contains nonnegative decimal integers rather
than their binary representations. See “Represent Words for Linear Block
Codes” on page 3-73 or the reference page for encode for a description of
the formats of msg and code.

Decoding the code requires the generator matrix and possibly a decoding
table. If you have defined variables code, n, k, genmat, and possibly also
trt, then the commands

newmsg = decode(code,n,k,'linear',genmat);
newmsg = decode(code,n,k,'linear/decimal',genmat);
newmsg = decode(code,n,k,'linear',genmat,trt);
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newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in
the decoding table that trt represents.

Example: Generic Linear Block Coding

The example below encodes a message, artificially adds some noise, decodes
the noisy code, and keeps track of errors that the decoder detects along the
way. Because the decoding table contains only zeros, the decoder does not
correct any errors.

n = 4; k = 2;
genmat = [[1 1; 1 0], eye(2)]; % Generator matrix
msg = [0 1; 0 0; 1 0]; % Three messages, two bits each
% Create three codewords, four bits each.
code = encode(msg,n,k,'linear',genmat);
noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2^(n-k),n); % No correction of errors
% Decode, keeping track of all detected errors.
[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your
results might vary because this example uses random numbers as errors.

err_words =

1
2

Cyclic Codes. A cyclic code is a linear block code with the property that
cyclic shifts of a codeword (expressed as a series of bits) are also codewords.
An alternative characterization of cyclic codes is based on its generator
polynomial, as mentioned in “Generator Polynomial” on page 3-80 and
discussed in [5].
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Encoding a message using a cyclic code requires a generator polynomial. If you
have defined variables msg, n, k, and genpoly, then either of the commands

code = encode(msg,n,k,'cyclic',genpoly);
code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the
generator polynomial genpoly. genpoly is an optional argument for encode.
The default generator polynomial is cyclpoly(n,k). The /decimal option,
suitable when 2^n and 2^k are not very large, indicates that msg contains
nonnegative decimal integers rather than their binary representations. See
“Represent Words for Linear Block Codes” on page 3-73 or the reference page
for encode for a description of the formats of msg and code.

Decoding the code requires the generator polynomial and possibly a decoding
table. If you have defined variables code, n, k, genpoly, and trt, then the
commands

newmsg = decode(code,n,k,'cyclic',genpoly);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly);
newmsg = decode(code,n,k,'cyclic',genpoly,trt);
newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);

decode the information in code, using the [n,k] code that the generator matrix
genmat determines. decode also corrects errors according to instructions in
the decoding table that trt represents. genpoly is an optional argument
in the first two syntaxes above. The default generator polynomial is
cyclpoly(n,k).

Example

You can modify the example in the section “Generic Linear Block Codes” on
page 3-82 so that it uses the cyclic coding technique, instead of the linear
block code with the generator matrix genmat. Make the changes listed below:

• Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x^2

3-84



Error Detection and Correction

• In the fifth and ninth lines (encode and decode commands), replace genmat
by genpoly and replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference
page for encode.

Hamming Codes. The reference pages for encode and decode contain
examples of encoding and decoding Hamming codes. Also, the section
“Decoding Table” on page 3-81 illustrates error correction in a Hamming code.

Hamming Codes

• “Create a Hamming Code in Binary Format Using Simulink” on page 3-85

• “Reduce the Error Rate Using a Hamming Code” on page 3-86

Create a Hamming Code in Binary Format Using Simulink
This example shows very simply how to use an encoder and decoder. It
illustrates the appropriate vector lengths of the code and message signals for
the coding blocks. Because the Error Rate Calculation block accepts only
scalars or frame-based column vectors as the transmitted and received signals,
this example uses frame-based column vectors throughout. (It thus avoids
having to change signal attributes using a block such as Convert 1-D to 2-D.)

Open this model by entering doc_hamming at the MATLAB command line. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.
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- Check the Frame-based outputs check box.

- Set Samples per frame to 4.

• Hamming Encoder, with default parameter values

• Hamming Decoder, with default parameter values

• Error Rate Calculation, in the Comm Sinks library, with default parameter
values

Connect the blocks as in the preceding figure. Use the Signal Dimensions
feature from the Port/Signal Displays submenu of the model window’s
Format menu. After updating the diagram if necessary (Update Diagram
from the Edit menu), the connector lines show relevant signal attributes.
The connector lines are double lines to indicate frame-based signals, and
the annotations next to the lines show that the signals are column vectors
of appropriate sizes.

Reduce the Error Rate Using a Hamming Code

• “Section Overview” on page 3-86

• “Building the Hamming Code Model” on page 3-87

• “Using the Hamming Encoder and Decoder Blocks” on page 3-88

• “Setting Parameters in the Hamming Code Model” on page 3-89

• “Labeling the Display Block” on page 3-89

• “Running the Hamming Code Model” on page 3-90

• “Displaying Frame Sizes” on page 3-90

• “Adding a Scope to the Model” on page 3-91

• “Setting Parameters in the Expanded Model” on page 3-92

• “Observing Channel Errors with the Scope” on page 3-93

Section Overview. This section describes how to reduce the error rate by
adding an error-correcting code. The following figure shows an example that
uses a Hamming code.
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Hamming Code Model

To open a complete version of the model, type doc_hamming at the MATLAB
prompt.

Building the Hamming Code Model. You can build the Hamming code
model by following these steps:

1 Type doc_channel at the MATLAB prompt to open the channel noise
model. Then save the model as my_hamming in the folder where you keep
your work files.

2 Drag the following blocks from the Simulink Library Browser into the
model window:

• Hamming Encoder block, from the Block sublibrary of the Error
Detection and Correction library

• Hamming Decoder block, from the Block sublibrary of the Error
Detection and Correction library

3 Click the right border of the model and drag it to the right to widen the
model window.

4 Move the Binary Symmetric Channel block, the Error Rate Calculation
block, and the Display block to the right by clicking and dragging. This
creates more space between the Binary Symmetric Channel block and the
blocks next to it. The model should now look like the following figure.
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5 Click the Hamming Encoder block and drag it on top of the line between
the Bernoulli Binary Generator block and the Binary Symmetric Channel
block, to the right of the branch point, as shown in the following figure.
Then release the mouse button. The Hamming Encoder block should
automatically connect to the line from the Bernoulli Binary Generator
block to the Binary Symmetric Channel block.

6 Click the Hamming Decoder block and drag it on top of the line between
the Binary Symmetric Channel block and the Error Rate Calculation block.

Using the Hamming Encoder and Decoder Blocks. The Hamming
Encoder block encodes the data before it is sent through the channel. The
default code is the [7,4] Hamming code, which encodes message words of
length 4 into codewords of length 7. As a result, the block converts frames of
size 4 into frames of size 7. The code can correct one error in each transmitted
codeword.

For an [n,k] code, the input to the Hamming Encoder block must consist of
vectors of size k. In this example, k = 4.

The Hamming Decoder block decodes the data after it is sent through the
channel. If at most one error is created in a codeword by the channel, the
block decodes the word correctly. However, if more than one error occurs, the
Hamming Decoder block might decode incorrectly.
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To learn more about the Communications System Toolbox block coding
features, see in the online documentation.

Setting Parameters in the Hamming Code Model. Double-click the
Bernoulli Binary Generator block and make the following changes to the
parameter settings in the block’s dialog box, as shown in the following figure:

1 Select the box next to Frame-based outputs.

2 Set Samples per frame to 4. This converts the output of the block into
frames of size 4, in order to meet the input requirement of the Hamming
Encoder Block. See “Sample-Based and Frame-Based Processing” on page
2-4 for more information about frames.

Note Many blocks, such as the Hamming Encoder block, require their
input to be a vector of a specific size. If you connect a source block, such
as the Bernoulli Binary Generator block, to one of these blocks, select the
box next to Frame-based outputs in the dialog for the source, and set
Samples per frame to the required value.

Labeling the Display Block. You can change the label that appears below a
block to make it more informative. For example, to change the label below
the Display block to “Error Rate Display,” first select the label with the
mouse. This causes a box to appear around the text. Enter the changes to the
text in the box.
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Running the Hamming Code Model. To run the model, select Simulation
> Start. The model terminates after 100 errors occur. The error rate,
displayed in the top window of the Display block, is approximately .001. You
get slightly different results if you change the Initial seed parameters in the
model or run a simulation for a different length of time.

You expect an error rate of approximately .001 for the following reason: The
probability of two or more errors occurring in a codeword of length 7 is

1 – (0.99)7 – 7(0.99)6(0.01) = 0.002

If the codewords with two or more errors are decoded randomly, you expect
about half the bits in the decoded message words to be incorrect. This
indicates that .001 is a reasonable value for the bit error rate.

To obtain a lower error rate for the same probability of error, try using a
Hamming code with larger parameters. To do this, change the parameters
Codeword length and Message length in the Hamming Encoder and
Decoder block dialog boxes. You also have to make the appropriate changes
to the parameters of the Bernoulli Binary Generator block and the Binary
Symmetric Channel block.

Displaying Frame Sizes. You can display the sizes of data frames in
different parts of the model by selecting Signal Dimensions from the
Port/Signal Displays submenu of the Format menu at the top of the
model window. This is shown in the following figure. The line leading out of
the Bernoulli Binary Generator block is labeled [4x1], indicating that its
output consists of column vectors of size 4. Because the Hamming Encoder
block uses a [7,4] code, it converts frames of size 4 into frames of size 7, so
its output is labeled [7x1].

Displaying Frame Sizes
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Adding a Scope to the Model. To display the channel errors produced
by the Binary Symmetric Channel block, add a Scope block to the model.
This is a good way to see whether your model is functioning correctly. The
example shown in the following figure shows where to insert the Scope block
into the model.

To build this model from the one shown in the figure Hamming Code Model
on page 3-87, follow these steps:

1 Drag the following blocks from the Simulink Library Browser into the
model window:

• Relational Operator block, from the Simulink Logic and Bit Operations
library

• Scope block, from the Simulink Sinks library

• Two copies of the Unbuffer block, from the Buffers sublibrary of the
Signal Management library in DSP System Toolbox

2 Double-click the Binary Symmetric Channel block to open its dialog box,
and select Output error vector. This creates a second output port for the
block, which carries the error vector.

3 Double-click the Scope block and click the Parameters button on the
toolbar. Set Number of axes to 2 and click OK.

4 Connect the blocks as shown in the preceding figure.
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Setting Parameters in the Expanded Model. Make the following changes
to the parameters for the blocks you added to the model.

Error Rate Calculation Block

Double-click the Error Rate Calculation block and clear the box next to Stop
simulation in the block’s dialog box.

Scope Block

The Scope block displays the channel errors and uncorrected errors. To
configure the block,

1 Double-click the block to open the scope, if it is not already open.

2 Click the Parameters button on the toolbar.

3 Set Time range to 5000.

4 Click the Data history tab.

5 Type 30000 in the Limit data points to last field, and click OK.

The scope should now appear as shown.
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To configure the axes, follow these steps:

1 Right-click the vertical axis at the left side of the upper scope.

2 In the context menu, select Axes properties.

3 In the Y-min field, type -1.

4 In the Y-max field, type 2, and click OK.

5 Repeat the same steps for the vertical axis of the lower scope.

6 Widen the scope window until it is roughly three times as wide as it is high.
You can do this by clicking the right border of the window and dragging the
border to the right, while pressing the mouse button.

Relational Operator

Set Relational Operator to ~= in the block’s dialog box. The Relational
Operator block compares the transmitted signal, coming from the Bernoulli
Random Generator block, with the received signal, coming from the Hamming
Decoder block. The block outputs a 0 when the two signals agree and a 1
when they disagree.

Observing Channel Errors with the Scope. When you run the model, the
Scope block displays the error data. At the end of each 5000 time steps, the
scope appears as shown in the following figure. The scope then clears the
displayed data and displays the next 5000 data points.

Scope with Model Running
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The upper scope shows the channel errors generated by the Binary Symmetric
Channel block. The lower scope shows errors that are not corrected by
channel coding.

Click the Stop button on the toolbar at the top of the model window to stop
the scope.

To zoom in on the scope so that you can see individual errors, first click the
middle magnifying glass button at the top left of the Scope window. Then
click one of the lines in the lower scope. This zooms in horizontally on the
line. Continue clicking the lines in the lower scope until the horizontal scale
is fine enough to detect individual errors. A typical example of what you
might see is shown in the figure below.

Zooming In on the Scope

The wider rectangular pulse in the middle of the upper scope represents two
1s. These two errors, which occur in a single codeword, are not corrected.
This accounts for the uncorrected errors in the lower scope. The narrower
rectangular pulse to the right of the upper scope represents a single error,
which is corrected.

When you are done observing the errors, select Simulation > Stop.

“Export Data to MATLAB” on page 1-3 explains how to send the error data to
the MATLAB workspace for more detailed analysis.

BCH Codes

• “Represent Words for BCH Codes” on page 3-95

• “Parameters for BCH Codes” on page 3-95

• “Create and Decode BCH Codes” on page 3-96

• “Algorithms for BCH Errors-only Decoding” on page 3-98
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Represent Words for BCH Codes
A message for an [n,k] BCH code must be a k-column binary Galois array. The
code that corresponds to that message is an n-column binary Galois array.
Each row of these Galois arrays represents one word.

The example below illustrates how to represent words for a [15, 11] BCH code.

n = 15; k = 5; % Codeword length and message length
msg = gf([1 0 0 1 0; 1 0 1 1 1]); % Two messages in a Galois array
cbch = bchenc(msg,n,k) % Two codewords in a Galois array.

The output is

cbch = GF(2) array.

Array elements =

Columns 1 through 5

1 0 0 1 0
1 0 1 1 1

Columns 6 through 10

0 0 1 1 1
0 0 0 0 1

Columns 11 through 15

1 0 1 0 1
0 1 0 0 1

Parameters for BCH Codes
BCH codes use special values of n and k:

• n, the codeword length, is an integer of the form 2m-1 for some integer m > 2.

• k, the message length, is a positive integer less than n. However, only
some positive integers less than n are valid choices for k. See the bchenc
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reference page for a list of some valid values of k corresponding to values of
n up to 511.

Create and Decode BCH Codes
The bchenc and bchdec functions create and decode BCH codes, using
the data described in “Represent Words for BCH Codes” on page 3-95 and
“Parameters for BCH Codes” on page 3-95. This section illustrates how to use
bchenc and bchdec.

The topics are

• “Example: BCH Coding Syntaxes” on page 3-96

• “Detect and Correct Errors in a BCH Code Using MATLAB” on page 3-97

Example: BCH Coding Syntaxes. The example below illustrates how to
encode and decode data using a [15, 5] BCH code. The example shows that

• You can vary the position of the parity symbols within the codewords,
choosing either the end (default) or beginning.

• Corresponding syntaxes of bchenc and bchdec use the same input
arguments, except for the first input argument.

n = 15; k = 5; % Codeword length and message length
dat = randint(4,k); % Four random binary messages
msg = gf(dat); % Represent data using a Galois array.

% Simplest syntax for encoding
c1 = bchenc(msg,n,k);
d1 = bchdec(c1,n,k);

% Prepend the parity symbols instead of appending them.
c2 = bchenc(msg,n,k,'beginning');
d2 = bchdec(c2,n,k,'beginning');

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg)
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The output is below.

chk =

1

Detect and Correct Errors in a BCH Code Using MATLAB. The following
example illustrates the decoding results for a corrupted code. The example
encodes some data, introduces errors in each codeword, and invokes bchdec
to attempt to decode the noisy code. It uses additional output arguments in
bchdec to gain information about the success of the decoding process.

n = 15; k = 5; % Codeword length and message length
[gp,t] = bchgenpoly(n,k); % t is error-correction capability.
nw = 4; % Number of words to process
msgw = gf(randint(nw,k)); % Random k-symbol messages
c = bchenc(msgw,n,k); % Encode the data.
noise = randerr(nw,n,t); % t errors/row
cnoisy = c + noise; % Add noise to the code.
[dc,nerrs,corrcode] = bchdec(cnoisy,n,k); % Decode cnoisy.

% Check that the decoding worked correctly.
chk2 = isequal(dc,msgw) & isequal(corrcode,c)
nerrs % Find out how many errors bchdec corrected.

Notice that the array of noise values contains binary values, and that the
addition operation c + noise takes place in the Galois field GF(2) because
c is a Galois array in GF(2).

The output from the example is below. The nonzero value of ans indicates
that the decoder was able to correct the corrupted codewords and recover the
original message. The values in the vector nerrs indicate that the decoder
corrected t errors in each codeword.

chk2 =

1

nerrs =
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3
3
3
3

Excessive Noise in BCH Codewords

In the previous example, bchdec corrected all the errors. However, each
BCH code has a finite error-correction capability. To learn more about how
bchdec behaves when the noise is excessive, see the analogous discussion for
Reed-Solomon codes in “Excessive Noise in Reed-Solomon Codewords” on
page 3-107.

Algorithms for BCH Errors-only Decoding

Overview. The errors-only decoding algorithm used for BCH and RS codes
can be described by the following steps (sections 5.3.2, 5.4, and 5.6 in ).

1 Calculate the first 2t terms of the infinite degree syndrome polynomial,

S z( ) .

2 If those 2t terms of S z( ) are all equal to 0, then the code has no errors , no
correction needs to be performed, and the decoding algorithm ends.

3 If one or more terms of S z( ) are nonzero, calculate the error locator

polynomial, Λ z( ) , via the Berlekamp algorithm.

4 Calculate the error evaluator polynomial, Ω z( ) , via

Λ Ωz S z z z t( ) ( ) = ( )mod 2

5 Correct an error in the codeword according to

ei

i

im

m

m
=

−

−

Ω
Λ

( )
’( )
α
α
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where eim
is the error magnitude in the im th position in the codeword, m is

a value less than the error-correcting capability of the code, Ω z( ) is the
error magnitude polynomial, Λ ’( )z is the formal derivative of the error

locator polynomial, Λ z( ) , and α is the primitive element of the Galois
field of the code.

Further description of several of the steps is given in the following sections.

Syndrome Calculation. For narrow-sense codes, the 2t terms of S z( ) are
calculated by evaluating the received codeword at successive powers of α
(the field’s primitive element) from 0 to 2t-1. In other words, if we assume

one-based indexing of codewords C z( ) and the syndrome polynomial S z( ) ,

and that codewords are of the form [ ... ]c c cN1 1    , then each term Si of S z( ) is
given as

S ci i
i

N
N i=

=

− −∑
1

1α

Error Locator Polynomial Calculation. The error locator polynomial,

Λ z( ) , is found using the Berlekamp algorithm. A complete description of this
algorithm is found in , but we summarize the algorithm as follows.

We define the following variables.

Variable Description

n Iterator variable

k Iterator variable

L Length of the feedback register used to generate

the first 2t terms of S z( )

D(z) Correction polynomial

d Discrepancy
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The following diagram shows the iterative procedure (i.e., the Berlekamp

algorithm) used to find Λ z( ) .
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Error Evaluator Polynomial Calculation. The error evaluator polynomial,

Ω z( ) , is simply the convolution of Λ z( ) and S z( ) .

Reed-Solomon Codes

• “Represent Words for Reed-Solomon Codes” on page 3-102

• “Parameters for Reed-Solomon Codes” on page 3-103

• “Create and Decode Reed-Solomon Codes” on page 3-104

• “Find a Generator Polynomial” on page 3-109

• “Reed Solomon Examples with Shortening, Puncturing, and Erasures” on
page 3-110

Represent Words for Reed-Solomon Codes
This toolbox supports Reed-Solomon codes that use m-bit symbols instead of
bits. A message for an [n,k] Reed-Solomon code must be a k-column Galois
array in the field GF(2m). Each array entry must be an integer between 0 and
2m-1. The code corresponding to that message is an n-column Galois array in
GF(2m). The codeword length n must be between 3 and 2m-1.

Note For information about Galois arrays and how to create them, see
“Representing Elements of Galois Fields” on page 3-116 or the reference page
for the gf function.

The example below illustrates how to represent words for a [7,3] Reed-Solomon
code.

n = 7; k = 3; % Codeword length and message length
m = 3; % Number of bits in each symbol
msg = gf([1 6 4; 0 4 3],m); % Message is a Galois array.
c = rsenc(msg,n,k) % Code will be a Galois array.

The output is

c = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
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Array elements =

1 6 4 4 3 6 3
0 4 3 3 7 4 7

Parameters for Reed-Solomon Codes
This section describes several integers related to Reed-Solomon codes and
discusses how to find generator polynomials.

Allowable Values of Integer Parameters. The table below summarizes
the meanings and allowable values of some positive integer quantities related
to Reed-Solomon codes as supported in this toolbox. The quantities n and k
are input parameters for Reed-Solomon functions in this toolbox.

Symbol Meaning Value or Range

m Number of bits per
symbol

Integer between 3 and
16

n Number of symbols per
codeword

Integer between 3 and
2m-1

k Number of symbols per
message

Positive integer less
than n, such that n-k is
even

t Error-correction
capability of the code

(n-k)/2

Generator Polynomial. The rsgenpoly function produces generator
polynomials for Reed-Solomon codes. This is useful if you want to use rsenc
and rsdec with a generator polynomial other than the default, or if you want
to examine or manipulate a generator polynomial. rsgenpoly represents a
generator polynomial using a Galois row vector that lists the polynomial’s
coefficients in order of descending powers of the variable. If each symbol has
m bits, the Galois row vector is in the field GF(2m). For example, the command

r = rsgenpoly(15,13)
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r = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

1 6 8

finds that one generator polynomial for a [15,13] Reed-Solomon code is
X2 + (A2 + A)X + (A3), where A is a root of the default primitive polynomial for
GF(16).

Algebraic Expression for Generator Polynomials

The generator polynomials that rsgenpoly produces have the form
(X - Ab)(X - Ab+1)...(X - Ab+2t-1), where b is an integer, A is a root of the primitive
polynomial for the Galois field, and t is (n-k)/2. The default value of b is
1. The output from rsgenpoly is the result of multiplying the factors and
collecting like powers of X. The example below checks this formula for the
case of a [15,13] Reed-Solomon code, using b = 1.

n = 15;
a = gf(2,log2(n+1)); % Root of primitive polynomial
f1 = [1 a]; f2 = [1 a^2]; % Factors that form generator polynomial
f = conv(f1,f2) % Generator polynomial, same as r above.

Create and Decode Reed-Solomon Codes
The rsenc and rsdec functions create and decode Reed-Solomon codes, using
the data described in “Represent Words for Reed-Solomon Codes” on page
3-102 and “Parameters for Reed-Solomon Codes” on page 3-103.

This section illustrates how to use rsenc and rsdec. The topics are

• “Reed-Solomon Coding Syntaxes in MATLAB” on page 3-105

• “Detect and Correct Errors in a Reed-Solomon Code Using MATLAB” on
page 3-106

• “Excessive Noise in Reed-Solomon Codewords” on page 3-107

• “Create Shortened Reed-Solomon Codes” on page 3-107
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Reed-Solomon Coding Syntaxes in MATLAB. The example below
illustrates multiple ways to encode and decode data using a [15,13]
Reed-Solomon code. The example shows that you can

• Vary the generator polynomial for the code, using rsgenpoly to produce
a different generator polynomial.

• Vary the primitive polynomial for the Galois field that contains the
symbols, using an input argument in gf.

• Vary the position of the parity symbols within the codewords, choosing
either the end (default) or beginning.

This example also shows that corresponding syntaxes of rsenc and rsdec use
the same input arguments, except for the first input argument.

m = 4; % Number of bits in each symbol
n = 2^m-1; k = 13; % Codeword length and message length
data = randint(4,k,2^m); % Four random integer messages
msg = gf(data,m); % Represent data using a Galois array.

% Simplest syntax for encoding
c1 = rsenc(msg,n,k);
d1 = rsdec(c1,n,k);

% Vary the generator polynomial for the code.
c2 = rsenc(msg,n,k,rsgenpoly(n,k,19,2));
d2 = rsdec(c2,n,k,rsgenpoly(n,k,19,2));

% Vary the primitive polynomial for GF(16).
msg2 = gf(data,m,25);
c3 = rsenc(msg2,n,k);
d3 = rsdec(c3,n,k);

% Prepend the parity symbols instead of appending them.
c4 = rsenc(msg,n,k,'beginning');
d4 = rsdec(c4,n,k,'beginning');

% Check that the decoding worked correctly.
chk = isequal(d1,msg) & isequal(d2,msg) & isequal(d3,msg2) &...
isequal(d4,msg)
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The output is

chk =

1

Detect and Correct Errors in a Reed-Solomon Code Using MATLAB.
The example below illustrates the decoding results for a corrupted code.
The example encodes some data, introduces errors in each codeword, and
invokes rsdec to attempt to decode the noisy code. It uses additional output
arguments in rsdec to gain information about the success of the decoding
process.

m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Codeword length and message length
t = (n-k)/2; % Error-correction capability of the code
nw = 4; % Number of words to process
msgw = gf(randint(nw,k,2^m),m); % Random k-symbol messages
c = rsenc(msgw,n,k); % Encode the data.
noise = (1+randint(nw,n,2^m-1)).*randerr(nw,n,t); % t errors/row
cnoisy = c + noise; % Add noise to the code.
[dc,nerrs,corrcode] = rsdec(cnoisy,n,k); % Decode the noisy code.
% Check that the decoding worked correctly.
isequal(dc,msgw) & isequal(corrcode,c)
nerrs % Find out how many errors rsdec corrected.

The array of noise values contains integers between 1 and 2^m, and the
addition operation c + noise takes place in the Galois field GF(2^m) because
c is a Galois array in GF(2^m).

The output from the example is below. The nonzero value of ans indicates
that the decoder was able to correct the corrupted codewords and recover the
original message. The values in the vector nerrs indicates that the decoder
corrected t errors in each codeword.

ans =

1
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nerrs =

2
2
2
2

Excessive Noise in Reed-Solomon Codewords. In the previous example,
rsdec corrected all of the errors. However, each Reed-Solomon code has a
finite error-correction capability. If the noise is so great that the corrupted
codeword is too far in Hamming distance from the correct codeword, that
means either

• The corrupted codeword is close to a valid codeword other than the correct
codeword. The decoder returns the message that corresponds to the other
codeword.

• The corrupted codeword is not close enough to any codeword for successful
decoding. This situation is called a decoding failure. The decoder removes
the symbols in parity positions from the corrupted codeword and returns
the remaining symbols.

In both cases, the decoder returns the wrong message. However, you can
tell when a decoding failure occurs because rsdec also returns a value of -1
in its second output.

To examine cases in which codewords are too noisy for successful decoding,
change the previous example so that the definition of noise is

noise = (1+randint(nw,n,n)).*randerr(nw,n,t+1); % t+1 errors/row

Create Shortened Reed-Solomon Codes. Every Reed-Solomon encoder
uses a codeword length that equals 2m-1 for an integer m. A shortened
Reed-Solomon code is one in which the codeword length is not 2m-1. A
shortened [n,k] Reed-Solomon code implicitly uses an [n1,k1] encoder, where

• n1 = 2
m - 1, where m is the number of bits per symbol

• k1 = k + (n1 - n)
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The rsenc and rsdec functions support shortened codes using the same
syntaxes they use for nonshortened codes. You do not need to indicate
explicitly that you want to use a shortened code. For example, compare the
two similar-looking commands below. The first creates a (nonshortened) [7,5]
code. The second causes rsenc to create a [5,3] shortened code by implicitly
using a [7,5] encoder.

m = 3; ordinarycode = rsenc(gf([1 1 1 1 1],m),7,5);
m = 3; shortenedcode = rsenc(gf([1 1 1],m),5,3);

How rsenc Creates a Shortened Code

When creating a shortened code, rsenc performs these steps:

• Pads each message by prepending zeros

• Encodes each padded message using a Reed-Solomon encoder having an
allowable codeword length and the desired error-correction capability

• Removes the extra zeros from the nonparity symbols of each codeword

The example below illustrates this process. Note that forming a [12,8]
Reed-Solomon code actually uses a [15,11] Reed-Solomon encoder. You do not
have to indicate in the rsenc syntax that this is a shortened code or that
the proper encoder to use is [15,11].

n = 12; k = 8; % Lengths for the shortened code
m = ceil(log2(n+1)); % Number of bits per symbol
msg = gf(randint(3,k,2^m),m); % Random array of 3 k-symbol words
code = rsenc(msg,n,k); % Create a shortened code.

% Do the shortening manually, just to show how it works.
n_pad = 2^m-1; % Codeword length in the actual encoder
k_pad = k+(n_pad-n); % Message length in the actual encoder
msg_pad=[zeros(3, n_pad-n), msg]; % Prepend zeros to each word.
code_pad = rsenc(msg_pad,n_pad,k_pad); % Encode padded words.
code_eqv = code_pad(:,n_pad-n+1:n_pad); % Remove extra zeros.
ck = isequal(code_eqv,code); % Returns true (1).
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Find a Generator Polynomial
To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code,
use the cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The
commands

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10
genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1
genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output
is below.

genpolyCyclic =

1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector
that lists the polynomial’s coefficients in order of ascending powers of the
variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using
a Galois row vector that lists the polynomial’s coefficients in order of
descending powers of the variable.
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• rsgenpoly uses coefficients in a Galois field other than the binary field
GF(2). For more information on the meaning of these coefficients, see
“How Integers Correspond to Galois Field Elements” on page 3-120 and
“Polynomials over Galois Fields” on page 3-141.

Nonuniqueness of Generator Polynomials. Some pairs of message length
and codeword length do not uniquely determine the generator polynomial.
The syntaxes for functions in the example above also include options for
retrieving generator polynomials that satisfy certain constraints that you
specify. See the functions’ reference pages for details about syntax options.

Algebraic Expression for Generator Polynomials. The generator
polynomials produced by bchgenpoly and rsgenpoly have the form
(X - Ab)(X - Ab+1)...(X - Ab+2t-1), where A is a primitive element for an
appropriate Galois field, and b and t are integers. See the functions’ reference
pages for more information about this expression.

Reed Solomon Examples with Shortening, Puncturing, and
Erasures
In this section, a representative example of Reed Solomon coding with
shortening, puncturing, and erasures is built with increasing complexity of
error correction.

Encoder Example with Shortening and Puncturing. The following
figure shows a representative example of a (7,3) Reed Solomon encoder with
shortening and puncturing.
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Data
source

Add
zeros

Encode

Puncture
(1011)

Shorten

2-symbol
shortened
message

I1I2 0I1I2 0I1I2P1P2P3P4

I1I2P1P3P4 I1I2P1P2P3P4

3-symbol
message

RS Encoder with Shortening and Puncturing

(7, 3)

(6, 2)(5, 2)

In this figure, the message source outputs two information symbols,
designated by I1I2. (For a BCH example, the symbols are simply binary bits.)
Because the code is a shortened (7,3) code, a zero must be added ahead of the
information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is then RS encoded, and the added information zero is
subsequently removed, which yields a result of I1I2P1P2P3P4. (In this example,
the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this
case, is 1011. Within the puncture vector, a 1 means that the symbol is
kept, and a 0 means that the symbol is thrown away. In this example, the
puncturing operation removes the second parity symbol, yielding a final
vector of I1I2P1P3P4.

Decoder Example with Shortening and Puncturing. The following figure
shows how the RS encoder operates on a shortened and punctured codeword.

3-111



3 System Design

Depuncture
(1011)

Add
zeros

Demod

DecodeTruncate

(5, 2)

I1I2P1P3P4 I1I2P1EP3P4

I1I2 DI1I2
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This case corresponds to the encoder operations shown in the figure of the RS
encoder with shortening and puncturing. As shown in the preceding figure,
the encoder receives a (5,2) codeword, because it has been shortened from a
(7,3) codeword by one symbol, and one symbol has also been punctured.

As a first step, the decoder adds an erasure, designated by E, in the second
parity position of the codeword. This corresponds to the puncture vector 1011.
Adding a zero accounts for shortening, in the same way as shown in the
preceding figure. The single erasure does not exceed the erasure-correcting
capability of the code, which can correct four erasures. The decoding operation
results in the three-symbol message DI1I2. The first symbol is truncated, as in
the preceding figure, yielding a final output of I1I2.

Encoder Example with Shortening, Puncturing, and Erasures. The
following figure shows the decoder operating on the punctured, shortened
codeword, while also correcting erasures generated by the receiver.

3-112



Error Detection and Correction

Depuncture
(1011)

Add
zeros

Erase

DecodeTruncate

I1EP1P3E I1EP1EP3E

0I1EP1EP3EI1I2 DI1I2

(6, 2)

RS Encoder with Shortening, Puncturing, and Erasures
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In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder
sent. The demodulator declares that two of the five received symbols are
unreliable enough to be erased, such that symbols 2 and 5 are deemed to be
erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be
replaced with an erasure symbol, and a 0 means that the symbol is passed
unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform
the erasures indicated by the vector 01001. Within the erasures vector, a 1
means that the symbol is to be replaced with an erasure symbol, and a 0
means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used
in the encoding operation (i.e., 1011). Thus, an erasure symbol is inserted
between P1 and P3, yielding a codeword vector of I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information
vector accounts for the shortening. The resulting vector is 0I1EP1EP3E, such
that a (7,3) codeword is sent to the Berlekamp algorithm.
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This codeword is decoded, yielding a three-symbol message of DI1I2 (where
D refers to a dummy symbol). Finally, the removal of the D symbol from the
message vector accounts for the shortening and yields the original I1I2 vector.

For additional information, see the Reed-Solomon Coding with Erasures,
Punctures, and Shortening product demo.

LDPC Codes
Low-Density Parity-Check (LDPC) codes are linear error control codes with:

• Sparse parity-check matrices

• Long block lengths that can attain performance near the Shannon limit
(see fec.ldpcenc and fec.ldpcdec)

Communications System Toolbox performs LDPC Coding using Simulink
blocks and MATLAB objects.

The decoding process is done iteratively. If the number of iterations is too
small, the algorithm may not converge. You may need to experiment with the
number of iterations to find an appropriate value for your model. For details
on the decoding algorithm, see Decoding Algorithm.

Unlike some other codecs, you cannot connect an LDPC decoder directly to the
output of an LDPC encoder, because the decoder requires log-likelihood ratios
(LLR). Thus, you may use a demodulator to compute the LLRs.

message LDPC
Encoder

LDPC
DecoderModulator Channel Demodulator

Also, unlike other decoders, it is possible (although rare) that the output of
the LDPC decoder does not satisfy all parity checks.

Galois Field Computations
A Galois field is an algebraic field that has a finite number of members.
Galois fields having 2m members are used in error-control coding and are
denoted GF(2m). This chapter describes how to work with fields that have
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2m members, where m is an integer between 1 and 16. The sections in this
chapter are as follows.

• “Galois Field Terminology” on page 3-115

• “Representing Elements of Galois Fields” on page 3-116

• “Arithmetic in Galois Fields” on page 3-124

• “Logical Operations in Galois Fields” on page 3-130

• “Matrix Manipulation in Galois Fields” on page 3-133

• “Linear Algebra in Galois Fields” on page 3-134

• “Signal Processing Operations in Galois Fields” on page 3-138

• “Polynomials over Galois Fields” on page 3-141

• “Manipulating Galois Variables” on page 3-146

• “Speed and Nondefault Primitive Polynomials” on page 3-148

• “Selected Bibliography for Galois Fields” on page 3-149

If you need to use Galois fields having an odd number of elements, see Galois
Fields of Odd Characteristic in the Communications System Toolbox online
documentation.

For more details about specific functions that process arrays of Galois field
elements, see the online reference pages in the documentation for MATLAB
or for Communications System Toolbox software. MATLAB functions whose
generalization to Galois fields is straightforward to describe do not have
reference pages in this manual because the entries would be identical to those
in the MATLAB documentation.

Galois Field Terminology
The discussion of Galois fields in this document uses a few terms that are
not used consistently in the literature. The definitions adopted here appear
in van Lint [4]:

• A primitive element of GF(2m) is a cyclic generator of the group of nonzero
elements of GF(2m). This means that every nonzero element of the field can
be expressed as the primitive element raised to some integer power.
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• A primitive polynomial for GF(2m) is the minimal polynomial of some
primitive element of GF(2m). It is the binary-coefficient polynomial of
smallest nonzero degree having a certain primitive element as a root in
GF(2m). As a consequence, a primitive polynomial has degree m and is
irreducible.

The definitions imply that a primitive element is a root of a corresponding
primitive polynomial.

Representing Elements of Galois Fields

• “Section Overview” on page 3-116

• “Creating a Galois Array” on page 3-116

• “Example: Creating Galois Field Variables” on page 3-117

• “Example: Representing Elements of GF(8)” on page 3-119

• “How Integers Correspond to Galois Field Elements” on page 3-120

• “Example: Representing a Primitive Element” on page 3-121

• “Primitive Polynomials and Element Representations” on page 3-121

Section Overview. This section describes how to create a Galois array,
which is a MATLAB expression that represents the elements of a Galois
field. This section also describes how MATLAB technical computing software
interprets the numbers that you use in the representation, and includes
several examples.

Creating a Galois Array. To begin working with data from a Galois
field GF(2^m), you must set the context by associating the data with crucial
information about the field. The gf function performs this association and
creates a Galois array in MATLAB. This function accepts as inputs

• The Galois field data, x, which is a MATLAB array whose elements are
integers between 0 and 2^m-1.

• (Optional) An integer, m, that indicates x is in the field GF(2^m). Valid
values of m are between 1 and 16. The default is 1, which means that the
field is GF(2).
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• (Optional) A positive integer that indicates which primitive polynomial
for GF(2^m) you are using in the representations in x. If you omit this
input argument, gf uses a default primitive polynomial for GF(2^m). For
information about this argument, see Specifying the Primitive Polynomial
on page 121.

The output of the gf function is a variable that MATLAB recognizes as a
Galois field array, rather than an array of integers. As a result, when you
manipulate the variable, MATLAB works within the Galois field you have
specified. For example, if you apply the log function to a Galois array,
MATLAB computes the logarithm in the Galois field and not in the field of
real or complex numbers.

When MATLAB Implicitly Creates a Galois Array

Some operations on Galois arrays require multiple arguments. If you
specify one argument that is a Galois array and another that is an ordinary
MATLAB array, MATLAB interprets both as Galois arrays in the same
field. It implicitly invokes the gf function on the ordinary MATLAB array.
This implicit invocation simplifies your syntax because you can omit some
references to the gf function. For an example of the simplification, see
“Example: Addition and Subtraction” on page 3-126.

Example: Creating Galois Field Variables. The code below creates a row
vector whose entries are in the field GF(4), and then adds the row to itself.

x = 0:3; % A row vector containing integers
m = 2; % Work in the field GF(2^2), or, GF(4).
a = gf(x,m) % Create a Galois array in GF(2^m).

b = a + a % Add a to itself, creating b.

The output is

a = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 1 2 3
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b = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0 0 0
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The output shows the values of the Galois arrays named a and b. Each output
section indicates

• The field containing the variable, namely, GF(2^2) = GF(4).

• The primitive polynomial for the field. In this case, it is the toolbox’s
default primitive polynomial for GF(4).

• The array of Galois field values that the variable contains. In particular,
the array elements in a are exactly the elements of the vector x, and the
array elements in b are four instances of the zero element in GF(4).

The command that creates b shows how, having defined the variable a as
a Galois array, you can add a to itself by using the ordinary + operator.
MATLAB performs the vectorized addition operation in the field GF(4). The
output shows that

• Compared to a, b is in the same field and uses the same primitive
polynomial. It is not necessary to indicate the field when defining the sum,
b, because MATLAB remembers that information from the definition of
the addends, a.

• The array elements of b are zeros because the sum of any value with itself,
in a Galois field of characteristic two, is zero. This result differs from the
sum x + x, which represents an addition operation in the infinite field
of integers.

Example: Representing Elements of GF(8). To illustrate what the array
elements in a Galois array mean, the table below lists the elements of the
field GF(8) as integers and as polynomials in a primitive element, A. The
table should help you interpret a Galois array like

gf8 = gf([0:7],3); % Galois vector in GF(2^3)

Integer
Representation

Binary
Representation

Element of GF(8)

0 000 0

1 001 1
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Integer
Representation

Binary
Representation

Element of GF(8)

2 010 A

3 011 A + 1

4 100 A2

5 101 A2 + 1

6 110 A2 + A

7 111 A2 + A + 1

How Integers Correspond to Galois Field Elements. Building on
the GF(8) example above, this section explains the interpretation of array
elements in a Galois array in greater generality. The field GF(2^m) has 2^m
distinct elements, which this toolbox labels as 0, 1, 2,..., 2^m-1. These integer
labels correspond to elements of the Galois field via a polynomial expression
involving a primitive element of the field. More specifically, each integer
between 0 and 2^m-1 has a binary representation in m bits. Using the bits in
the binary representation as coefficients in a polynomial, where the least
significant bit is the constant term, leads to a binary polynomial whose order
is at most m-1. Evaluating the binary polynomial at a primitive element of
GF(2^m) leads to an element of the field.

Conversely, any element of GF(2^m) can be expressed as a binary polynomial
of order at most m-1, evaluated at a primitive element of the field. The m-tuple
of coefficients of the polynomial corresponds to the binary representation of
an integer between 0 and 2^m.

Below is a symbolic illustration of the correspondence of an integer X,
representable in binary form, with a Galois field element. Each bk is either
zero or one, while A is a primitive element.

X b b b b

b A b A b A b

m
m

m
m

= ⋅ + + ⋅ + ⋅ +

↔ ⋅ + + ⋅ + ⋅ +
−

−

−
−

1
1

2 1 0

1
1

2
2

1 0

2 4 2


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Example: Representing a Primitive Element. The code below defines a
variable alph that represents a primitive element of the field GF(24).

m = 4; % Or choose any positive integer value of m.
alph = gf(2,m) % Primitive element in GF(2^m)

The output is

alph = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

2

The Galois array alph represents a primitive element because of the
correspondence among

• The integer 2, specified in the gf syntax

• The binary representation of 2, which is 10 (or 0010 using four bits)

• The polynomial A + 0, where A is a primitive element in this field (or 0A3 +
0A2 + A + 0 using the four lowest powers of A)

Primitive Polynomials and Element Representations. This section
builds on the discussion in “Creating a Galois Array” on page 3-116 by
describing how to specify your own primitive polynomial when you create a
Galois array. The topics are

If you perform many computations using a nondefault primitive polynomial,
see “Speed and Nondefault Primitive Polynomials” on page 3-148.

Specifying the Primitive Polynomial

The discussion in “How Integers Correspond to Galois Field Elements” on
page 3-120 refers to a primitive element, which is a root of a primitive
polynomial of the field. When you use the gf function to create a Galois array,
the function interprets the integers in the array with respect to a specific
default primitive polynomial for that field, unless you explicitly provide a
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different primitive polynomial. A list of the default primitive polynomials is
on the reference page for the gf function.

To specify your own primitive polynomial when creating a Galois array, use
a syntax like

c = gf(5,4,25) % 25 indicates the primitive polynomial for GF(16).

instead of

c1= gf(5,4); % Use default primitive polynomial for GF(16).

The extra input argument, 25 in this case, specifies the primitive polynomial
for the field GF(2^m) in a way similar to the representation described in “How
Integers Correspond to Galois Field Elements” on page 3-120. In this case,
the integer 25 corresponds to a binary representation of 11001, which in turn
corresponds to the polynomial D4 + D3 + 1.

Note When you specify the primitive polynomial, the input argument
must have a binary representation using exactly m+1 bits, not including
unnecessary leading zeros. In other words, a primitive polynomial for GF(2^m)
always has order m.

When you use an input argument to specify the primitive polynomial, the
output reflects your choice by showing the integer value as well as the
polynomial representation.

d = gf([1 2 3],4,25)

d = GF(2^4) array. Primitive polynomial = D^4+D^3+1 (25 decimal)

Array elements =

1 2 3

Note After you have defined a Galois array, you cannot change the primitive
polynomial with respect to which MATLAB interprets the array elements.
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Finding Primitive Polynomials

You can use the primpoly function to find primitive polynomials for GF(2^m)
and the isprimitive function to determine whether a polynomial is primitive
for GF(2^m). The code below illustrates.

m = 4;
defaultprimpoly = primpoly(m) % Default primitive poly for GF(16)
allprimpolys = primpoly(m,'all') % All primitive polys for GF(16)
i1 = isprimitive(25) % Can 25 be the prim_poly input in gf(...)?
i2 = isprimitive(21) % Can 21 be the prim_poly input in gf(...)?

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

defaultprimpoly =

19

Primitive polynomial(s) =

D^4+D^1+1
D^4+D^3+1

allprimpolys =

19
25

i1 =

1

i2 =

0
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Effect of Nondefault Primitive Polynomials on Numerical Results

Most fields offer multiple choices for the primitive polynomial that helps
define the representation of members of the field. When you use the gf
function, changing the primitive polynomial changes the interpretation of
the array elements and, in turn, changes the results of some subsequent
operations on the Galois array. For example, exponentiation of a primitive
element makes it easy to see how the primitive polynomial affects the
representations of field elements.

a11 = gf(2,3); % Use default primitive polynomial of 11.
a13 = gf(2,3,13); % Use D^3+D^2+1 as the primitive polynomial.
z = a13.^3 + a13.^2 + 1 % 0 because a13 satisfies the equation
nz = a11.^3 + a11.^2 + 1 % Nonzero. a11 does not satisfy equation.

The output below shows that when the primitive polynomial has integer
representation 13, the Galois array satisfies a certain equation. By contrast,
when the primitive polynomial has integer representation 11, the Galois
array fails to satisfy the equation.

z = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

0

nz = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

6

The output when you try this example might also include a warning about
lookup tables. This is normal if you did not use the gftable function to
optimize computations involving a nondefault primitive polynomial of 13.

Arithmetic in Galois Fields

• “Section Overview” on page 3-125
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• “Example: Addition and Subtraction” on page 3-126

• “Example: Multiplication” on page 3-127

• “Example: Division” on page 3-128

• “Example: Exponentiation” on page 3-129

• “Example: Elementwise Logarithm” on page 3-130

Section Overview. You can perform arithmetic operations on Galois arrays
by using familiar MATLAB operators, listed in the table below. Whenever
you operate on a pair of Galois arrays, both arrays must be in the same
Galois field.

Operation Operator

Addition +

Subtraction -

Elementwise multiplication .*

Matrix multiplication *

Elementwise left division ./

Elementwise right division .\

Matrix left division /

Matrix right division \

Elementwise exponentiation .^

Elementwise logarithm log()

Exponentiation of a square Galois
matrix by a scalar integer

^

For multiplication and division of polynomials over a Galois field, see
“Addition and Subtraction of Polynomials” on page 3-142.
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Example: Addition and Subtraction. The code below adds two Galois
arrays to create an addition table for GF(8). Addition uses the ordinary +
operator. The code below also shows how to index into the array addtb to find
the result of adding 1 to the elements of GF(8).

m = 3;
e = repmat([0:2^m-1],2^m,1);
f = gf(e,m); % Create a Galois array.
addtb = f + f' % Add f to its own matrix transpose.

addone = addtb(2,:); % Assign 2nd row to the Galois vector addone.

The output is below.

addtb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

As an example of reading this addition table, the (7,4) entry in the addtb
array shows that gf(6,3) plus gf(3,3) equals gf(5,3). Equivalently, the
element A2+A plus the element A+1 equals the element A2+1. The equivalence
arises from the binary representation of 6 as 110, 3 as 011, and 5 as 101.

The subtraction table, which you can obtain by replacing + by -, is the same
as addtb. This is because subtraction and addition are identical operations
in a field of characteristic two. In fact, the zeros along the main diagonal of
addtb illustrate this fact for GF(8).
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Simplifying the Syntax

The code below illustrates scalar expansion and the implicit creation of a
Galois array from an ordinary MATLAB array. The Galois arrays h and h1
are identical, but the creation of h uses a simpler syntax.

g = gf(ones(2,3),4); % Create a Galois array explicitly.
h = g + 5; % Add gf(5,4) to each element of g.
h1 = g + gf(5*ones(2,3),4) % Same as h.

The output is below.

h1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

4 4 4
4 4 4

Notice that 1+5 is reported as 4 in the Galois field. This is true because the
5 represents the polynomial expression A2+1, and 1+(A2+1) in GF(16) is A2.
Furthermore, the integer that represents the polynomial expression A2 is 4.

Example: Multiplication. The example below multiplies individual
elements in a Galois array using the .* operator. It then performs matrix
multiplication using the * operator. The elementwise multiplication produces
an array whose size matches that of the inputs. By contrast, the matrix
multiplication produces a Galois scalar because it is the matrix product of
a row vector with a column vector.

m = 5;
row1 = gf([1:2:9],m); row2 = gf([2:2:10],m);
col = row2'; % Transpose to create a column array.
ep = row1 .* row2; % Elementwise product.
mp = row1 * col; % Matrix product.

Multiplication Table for GF(8)

As another example, the code below multiplies two Galois vectors using
matrix multiplication. The result is a multiplication table for GF(8).
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m = 3;
els = gf([0:2^m-1]',m);
multb = els * els' % Multiply els by its own matrix transpose.

The output is below.

multb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 3 1 7 5
0 3 6 5 7 4 1 2
0 4 3 7 6 2 5 1
0 5 1 4 2 7 3 6
0 6 7 1 5 3 2 4
0 7 5 2 1 6 4 3

Example: Division. The examples below illustrate the four division
operators in a Galois field by computing multiplicative inverses of individual
elements and of an array. You can also compute inverses using inv or using
exponentiation by -1.

Elementwise Division

This example divides 1 by each of the individual elements in a Galois array
using the ./ and .\ operators. These two operators differ only in their
sequence of input arguments. Each quotient vector lists the multiplicative
inverses of the nonzero elements of the field. In this example, MATLAB
expands the scalar 1 to the size of nz before computing; alternatively, you can
use as arguments two arrays of the same size.

m = 5;
nz = gf([1:2^m-1],m); % Nonzero elements of the field
inv1 = 1 ./ nz; % Divide 1 by each element.
inv2 = nz .\ 1; % Obtain same result using .\ operator.
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Matrix Division

This example divides the identity array by the square Galois array mat using
the / and \ operators. Each quotient matrix is the multiplicative inverse
of mat. Notice how the transpose operator (') appears in the equivalent
operation using \. For square matrices, the sequence of transpose operations
is unnecessary, but for nonsquare matrices, it is necessary.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minv1 = eye(3) / mat; % Compute matrix inverse.
minv2 = (mat' \ eye(3)')'; % Obtain same result using \ operator.

Example: Exponentiation. The examples below illustrate how to compute
integer powers of a Galois array. To perform matrix exponentiation on a
Galois array, you must use a square Galois array as the base and an ordinary
(not Galois) integer scalar as the exponent.

Elementwise Exponentiation

This example computes powers of a primitive element, A, of a Galois field. It
then uses these separately computed powers to evaluate the default primitive
polynomial at A. The answer of zero shows that A is a root of the primitive
polynomial. The .^ operator exponentiates each array element independently.

m = 3;
av = gf(2*ones(1,m+1),m); % Row containing primitive element
expa = av .^ [0:m]; % Raise element to different powers.
evp = expa(4)+expa(2)+expa(1) % Evaluate D^3 + D + 1.

The output is below.

evp = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

0
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Matrix Exponentiation

This example computes the inverse of a square matrix by raising the matrix
to the power -1. It also raises the square matrix to the powers 2 and -2.

m = 5;
mat = gf([1 2 3; 4 5 6; 7 8 9],m);
minvs = mat ^ (-1); % Matrix inverse
matsq = mat^2; % Same as mat * mat
matinvssq = mat^(-2); % Same as minvs * minvs

Example: Elementwise Logarithm. The code below computes the
logarithm of the elements of a Galois array. The output indicates how to
express each nonzero element of GF(8) as a power of the primitive element.
The logarithm of the zero element of the field is undefined.

gf8_nonzero = gf([1:7],3); % Vector of nonzero elements of GF(8)
expformat = log(gf8_nonzero) % Logarithm of each element

The output is

expformat =

0 1 3 2 6 4 5

As an example of how to interpret the output, consider the last entry in each
vector in this example. You can infer that the element gf(7,3) in GF(8)
can be expressed as either

• A5, using the last element of expformat

• A2+A+1, using the binary representation of 7 as 111. See “Example:
Representing Elements of GF(8)” on page 3-119 for more details.

Logical Operations in Galois Fields

• “Section Overview” on page 3-131

• “Testing for Equality” on page 3-131

• “Testing for Nonzero Values” on page 3-132
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Section Overview. You can apply logical tests to Galois arrays and obtain a
logical array. Some important types of tests are testing for the equality of two
Galois arrays and testing for nonzero values in a Galois array.

Testing for Equality. To compare corresponding elements of two Galois
arrays that have the same size, use the operators == and ~=. The result is
a logical array, each element of which indicates the truth or falsity of the
corresponding elementwise comparison. If you use the same operators to
compare a scalar with a Galois array, MATLAB technical computing software
compares the scalar with each element of the array, producing a logical array
of the same size.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg1 = (r1 .* r2 == [1 1 1]) % Does each element equal one?
lg2 = (r1 .* r2 == 1) % Same as above, using scalar expansion
lg3 = (r1 ~= r2) % Does each element differ from its inverse?

The output is below.

lg1 =

1 1 1

lg2 =

1 1 1

lg3 =

0 1 1

Comparison of isequal and ==

To compare entire arrays and obtain a logical scalar result rather than a
logical array, use the built-in isequal function. However, isequal uses strict
rules for its comparison, and returns a value of 0 (false) if you compare
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• A Galois array with an ordinary MATLAB array, even if the values of the
underlying array elements match

• A scalar with a nonscalar array, even if all elements in the array match
the scalar

The example below illustrates this difference between == and isequal.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;
lg4 = isequal(r1 .* r2, [1 1 1]); % False
lg5 = isequal(r1 .* r2, gf(1,m)); % False
lg6 = isequal(r1 .* r2, gf([1 1 1],m)); % True

Testing for Nonzero Values. To test for nonzero values in a Galois vector,
or in the columns of a Galois array that has more than one row, use the any
or all function. These two functions behave just like the ordinary MATLAB
functions any and all, except that they consider only the underlying array
elements while ignoring information about which Galois field the elements
are in. Examples are below.

m = 3; randels = gf(randint(6,1,2^m),m);
if all(randels) % If all elements are invertible

invels = randels .\ 1; % Compute inverses of elements.
else

disp('At least one element was not invertible.');
end
alph = gf(2,4);
poly = 1 + alph + alph^3;
if any(poly) % If poly contains a nonzero value

disp('alph is not a root of 1 + D + D^3.');
end
code = rsenc(gf([0:4;3:7],3),7,5); % Each row is a codeword.
if all(code,2) % Is each row entirely nonzero?

disp('Both codewords are entirely nonzero.');
else

disp('At least one codeword contains a zero.');
end
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Matrix Manipulation in Galois Fields

• “Basic Manipulations of Galois Arrays” on page 3-133

• “Basic Information About Galois Arrays” on page 3-134

Basic Manipulations of Galois Arrays. Basic array operations on Galois
arrays are in the table below. The functionality of these operations is
analogous to the MATLAB operations having the same syntax.

Operation Syntax

Index into array, possibly using
colon operator instead of a vector of
explicit indices

a(vector) or a(vector,vector1),
where vector and/or vector1 can be
":" instead of a vector

Transpose array a'

Concatenate matrices [a,b] or [a;b]

Create array having specified
diagonal elements

diag(vector) or diag(vector,k)

Extract diagonal elements diag(a) or diag(a,k)

Extract lower triangular part tril(a) or tril(a,k)

Extract upper triangular part triu(a) or triu(a,k)

Change shape of array reshape(a,k1,k2)

The code below uses some of these syntaxes.

m = 4; a = gf([0:15],m);
a(1:2) = [13 13]; % Replace some elements of the vector a.
b = reshape(a,2,8); % Create 2-by-8 matrix.
c = [b([1 1 2],1:3); a(4:6)]; % Create 4-by-3 matrix.
d = [c, a(1:4)']; % Create 4-by-4 matrix.
dvec = diag(d); % Extract main diagonal of d.
dmat = diag(a(5:9)); % Create 5-by-5 diagonal matrix
dtril = tril(d); % Extract upper and lower triangular
dtriu = triu(d); % parts of d.
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Basic Information About Galois Arrays. You can determine the length
of a Galois vector or the size of any Galois array using the length and size
functions. The functionality for Galois arrays is analogous to that of the
MATLAB operations on ordinary arrays, except that the output arguments
from size and length are always integers, not Galois arrays. The code below
illustrates the use of these functions.

m = 4; e = gf([0:5],m); f = reshape(e,2,3);
lne = length(e); % Vector length of e
szf = size(f); % Size of f, returned as a two-element row
[nr,nc] = size(f); % Size of f, returned as two scalars
nc2 = size(f,2); % Another way to compute number of columns

Positions of Nonzero Elements

Another type of information you might want to determine from a Galois array
are the positions of nonzero elements. For an ordinary MATLAB array, you
might use the find function. However, for a Galois array, you should use
find in conjunction with the ~= operator, as illustrated.

x = [0 1 2 1 0 2]; m = 2; g = gf(x,m);
nzx = find(x); % Find nonzero values in the ordinary array x.
nzg = find(g~=0); % Find nonzero values in the Galois array g.

Linear Algebra in Galois Fields

• “Inverting Matrices and Computing Determinants” on page 3-134

• “Computing Ranks” on page 3-135

• “Factoring Square Matrices” on page 3-136

• “Solving Linear Equations” on page 3-136

Inverting Matrices and Computing Determinants. To invert a square
Galois array, use the inv function. Related is the det function, which
computes the determinant of a Galois array. Both inv and det behave like
their ordinary MATLAB counterparts, except that they perform computations
in the Galois field instead of in the field of complex numbers.
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Note A Galois array is singular if and only if its determinant is exactly
zero. It is not necessary to consider roundoff errors, as in the case of real
and complex arrays.

The code below illustrates matrix inversion and determinant computation.

m = 4;
randommatrix = gf(randint(4,4,2^m),m);
gfid = gf(eye(4),m);
if det(randommatrix) ~= 0

invmatrix = inv(randommatrix);
check1 = invmatrix * randommatrix;
check2 = randommatrix * invmatrix;
if (isequal(check1,gfid) & isequal(check2,gfid))

disp('inv found the correct matrix inverse.');
end

else
disp('The matrix is not invertible.');

end

The output from this example is either of these two messages, depending on
whether the randomly generated matrix is nonsingular or singular.

inv found the correct matrix inverse.
The matrix is not invertible.

Computing Ranks. To compute the rank of a Galois array, use the rank
function. It behaves like the ordinary MATLAB rank function when given
exactly one input argument. The example below illustrates how to find the
rank of square and nonsquare Galois arrays.

m = 3;
asquare = gf([4 7 6; 4 6 5; 0 6 1],m);
r1 = rank(asquare);
anonsquare = gf([4 7 6 3; 4 6 5 1; 0 6 1 1],m);
r2 = rank(anonsquare);
[r1 r2]

The output is
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ans =

2 3

The values of r1 and r2 indicate that asquare has less than full rank but
that anonsquare has full rank.

Factoring Square Matrices. To express a square Galois array (or a
permutation of it) as the product of a lower triangular Galois array and an
upper triangular Galois array, use the lu function. This function accepts
one input argument and produces exactly two or three output arguments. It
behaves like the ordinary MATLAB lu function when given the same syntax.
The example below illustrates how to factor using lu.

tofactor = gf([6 5 7 6; 5 6 2 5; 0 1 7 7; 1 0 5 1],3);
[L,U]=lu(tofactor); % lu with two output arguments
c1 = isequal(L*U, tofactor) % True
tofactor2 = gf([1 2 3 4;1 2 3 0;2 5 2 1; 0 5 0 0],3);
[L2,U2,P] = lu(tofactor2); % lu with three output arguments
c2 = isequal(L2*U2, P*tofactor2) % True

Solving Linear Equations. To find a particular solution of a linear equation
in a Galois field, use the \ or / operator on Galois arrays. The table below
indicates the equation that each operator addresses, assuming that A and B
are previously defined Galois arrays.

Operator Linear
Equation

Syntax Equivalent Syntax
Using \

Backslash (\) A * x = B x = A \ B Not applicable

Slash (/) x * A = B x = B / A x = (A'\B')'

The results of the syntax in the table depend on characteristics of the Galois
array A:

• If A is square and nonsingular, the output x is the unique solution to the
linear equation.

• If A is square and singular, the syntax in the table produces an error.
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• If A is not square, MATLAB attempts to find a particular solution. If A'*A
or A*A' is a singular array, or if A is a tall matrix that represents an
overdetermined system, the attempt might fail.

Note An error message does not necessarily indicate that the linear equation
has no solution. You might be able to find a solution by rephrasing the
problem. For example, gf([1 2; 0 0],3) \ gf([1; 0],3) produces an
error but the mathematically equivalent gf([1 2],3) \ gf([1],3) does not.
The first syntax fails because gf([1 2; 0 0],3) is a singular square matrix.

Example: Solving Linear Equations

The examples below illustrate how to find particular solutions of linear
equations over a Galois field.

m = 4;
A = gf(magic(3),m); % Square nonsingular matrix
Awide=[A, 2*A(:,3)]; % 3-by-4 matrix with redundancy on the right
Atall = Awide'; % 4-by-3 matrix with redundancy at the bottom
B = gf([0:2]',m);
C = [B; 2*B(3)];
D = [B; B(3)+1];
thesolution = A \ B; % Solution of A * x = B
thesolution2 = B' / A; % Solution of x * A = B'
ck1 = all(A * thesolution == B) % Check validity of solutions.
ck2 = all(thesolution2 * A == B')
% Awide * x = B has infinitely many solutions. Find one.
onesolution = Awide \ B;
ck3 = all(Awide * onesolution == B) % Check validity of solution.
% Atall * x = C has a solution.
asolution = Atall \ C;
ck4 = all(Atall * asolution == C) % Check validity of solution.
% Atall * x = D has no solution.
notasolution = Atall \ D;
ck5 = all(Atall * notasolution == D) % It is not a valid solution.
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The output from this example indicates that the validity checks are all true
(1), except for ck5, which is false (0).

Signal Processing Operations in Galois Fields

• “Section Overview” on page 3-138

• “Filtering” on page 3-138

• “Convolution” on page 3-139

• “Discrete Fourier Transform” on page 3-140

Section Overview. You can perform some signal-processing operations
on Galois arrays, such as filtering, convolution, and the discrete Fourier
transform.

This section describes how to perform these operations.

Other information about the corresponding operations for ordinary real
vectors is in the Signal Processing Toolbox™ documentation.

Filtering. To filter a Galois vector, use the filter function. It behaves
like the ordinary MATLAB filter function when given exactly three input
arguments.

The code and diagram below give the impulse response of a particular filter
over GF(2).

m = 1; % Work in GF(2).
b = gf([1 0 0 1 0 1 0 1],m); % Numerator
a = gf([1 0 1 1],m); % Denominator
x = gf([1,zeros(1,19)],m);
y = filter(b,a,x); % Filter x.
figure; stem(y.x); % Create stem plot.
axis([0 20 -.1 1.1])
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Convolution. Communications System Toolbox software offers two
equivalent ways to convolve a pair of Galois vectors:

• Use the conv function, as described in “Multiplication and Division of
Polynomials” on page 3-142. This works because convolving two vectors
is equivalent to multiplying the two polynomials whose coefficients are
the entries of the vectors.

• Use the convmtx function to compute the convolution matrix of one of the
vectors, and then multiply that matrix by the other vector. This works
because convolving two vectors is equivalent to filtering one of the vectors
by the other. The equivalence permits the representation of a digital filter
as a convolution matrix, which you can then multiply by any Galois vector
of appropriate length.

Tip If you need to convolve large Galois vectors, multiplying by the convolution
matrix might be faster than using conv.
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Example

The example below computes the convolution matrix for a vector b in GF(4),
representing the numerator coefficients for a digital filter. It then illustrates
the two equivalent ways to convolve b with x over the Galois field.

m = 2; b = gf([1 2 3]',m);
n = 3; x = gf(randint(n,1,2^m),m);
C = convmtx(b,n); % Compute convolution matrix.
v1 = conv(b,x); % Use conv to convolve b with x
v2 = C*x; % Use C to convolve b with x.

Discrete Fourier Transform. The discrete Fourier transform is an important
tool in digital signal processing. This toolbox offers these tools to help you
process discrete Fourier transforms:

• fft, which transforms a Galois vector

• ifft, which inverts the discrete Fourier transform on a Galois vector

• dftmtx, which returns a Galois array that you can use to perform or invert
the discrete Fourier transform on a Galois vector

In all cases, the vector being transformed must be a Galois vector of length
2m-1 in the field GF(2m). The examples below illustrate the use of these
functions. You can check, using the isequal function, that y equals y1,
z equals z1, and z equals x.

m = 4;
x = gf(randint(2^m-1,1,2^m),m); % A vector to transform
alph = gf(2,m);
dm = dftmtx(alph);
idm = dftmtx(1/alph);
y = dm*x; % Transform x using the result of dftmtx.
y1 = fft(x); % Transform x using fft.
z = idm*y; % Recover x using the result of dftmtx(1/alph).
z1 = ifft(y1); % Recover x using ifft.
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Tip If you have many vectors that you want to transform (in the same field), it
might be faster to use dftmtx once and matrix multiplication many times,
instead of using fft many times.

Polynomials over Galois Fields

• “Section Overview” on page 3-141

• “Addition and Subtraction of Polynomials” on page 3-142

• “Multiplication and Division of Polynomials” on page 3-142

• “Evaluating Polynomials” on page 3-142

• “Roots of Polynomials” on page 3-143

• “Roots of Binary Polynomials” on page 3-144

• “Minimal Polynomials” on page 3-145

Section Overview. You can use Galois vectors to represent polynomials in
an indeterminate quantity x, with coefficients in a Galois field. Form the
representation by listing the coefficients of the polynomial in a vector in order
of descending powers of x. For example, the vector

gf([2 1 0 3],4)

represents the polynomial Ax3 + 1x2 + 0x + (A+1), where

• A is a primitive element in the field GF(24).

• x is the indeterminate quantity in the polynomial.

You can then use such a Galois vector to perform arithmetic with, evaluate,
and find roots of polynomials. You can also find minimal polynomials of
elements of a Galois field.
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Addition and Subtraction of Polynomials. To add and subtract
polynomials, use + and - on equal-length Galois vectors that represent the
polynomials. If one polynomial has lower degree than the other, you must
pad the shorter vector with zeros at the beginning so the two vectors have
the same length. The example below shows how to add a degree-one and a
degree-two polynomial.

lin = gf([4 2],3); % A^2 x + A, which is linear in x
linpadded = gf([0 4 2],3); % The same polynomial, zero-padded
quadr = gf([1 4 2],3); % x^2 + A^2 x + A, which is quadratic in x
% Can't do lin + quadr because they have different vector lengths.
sumpoly = [0, lin] + quadr; % Sum of the two polynomials
sumpoly2 = linpadded + quadr; % The same sum

Multiplication and Division of Polynomials. To multiply and divide
polynomials, use conv and deconv on Galois vectors that represent the
polynomials. Multiplication and division of polynomials is equivalent to
convolution and deconvolution of vectors. The deconv function returns
the quotient of the two polynomials as well as the remainder polynomial.
Examples are below.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
bpoly = gf([1 1],m); % x + 1
xpoly = gf([1 0],m); % x
% Product is A^2 x^3 + x^2 + (A^2 + A) x + (A + 1).
cpoly = conv(apoly,bpoly);
[a2,remd] = deconv(cpoly,bpoly); % a2==apoly. remd is zero.
[otherpol,remd2] = deconv(cpoly,xpoly); % remd is nonzero.

The multiplication and division operators in “Arithmetic in Galois Fields” on
page 3-124 multiply elements or matrices, not polynomials.

Evaluating Polynomials. To evaluate a polynomial at an element of a
Galois field, use polyval. It behaves like the ordinary MATLAB polyval
function when given exactly two input arguments. The example below
evaluates a polynomial at several elements in a field and checks the results
using .^ and .* in the field.

m = 4;
apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)
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x0 = gf([0 1 2],m); % Points at which to evaluate the polynomial
y = polyval(apoly,x0)

a = gf(2,m); % Primitive element of the field, corresponding to A.
y2 = a.^2.*x0.^2 + (a.^2+1).*x0 + (a+1) % Check the result.

The output is below.

y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

3 2 10

y2 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

3 2 10

The first element of y evaluates the polynomial at 0 and, therefore, returns
the polynomial’s constant term of 3.

Roots of Polynomials. To find the roots of a polynomial in a Galois field,
use the roots function on a Galois vector that represents the polynomial.
This function finds roots that are in the same field that the Galois vector is
in. The number of times an entry appears in the output vector from roots is
exactly its multiplicity as a root of the polynomial.

Note If the Galois vector is in GF(2m), the polynomial it represents might
have additional roots in some extension field GF((2m)k). However, roots does
not find those additional roots or indicate their existence.

The examples below find roots of cubic polynomials in GF(8).

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
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% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3

root = rts(ii);
rootsquared = gfmul(root,root,field);
rootcubed = gfmul(root,rootsquared,field);
answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
% Recall that 1 is really alpha to the zero power.
% If answer = -Inf, then the variable root represents
% a root of the polynomial.

end
answer

Roots of Binary Polynomials. In the special case of a polynomial having
binary coefficients, it is also easy to find roots that exist in an extension
field. This is because the elements 0 and 1 have the same unambiguous
representation in all fields of characteristic two. To find roots of a binary
polynomial in an extension field, apply the roots function to a Galois vector
in the extension field whose array elements are the binary coefficients of
the polynomial.

The example below seeks the roots of a binary polynomial in various fields.

gf2poly = gf([1 1 1],1); % x^2 + x + 1 in GF(2)
noroots = roots(gf2poly); % No roots in the ground field, GF(2)
gf4poly = gf([1 1 1],2); % x^2 + x + 1 in GF(4)
roots4 = roots(gf4poly); % The roots are A and A+1, in GF(4).
gf16poly = gf([1 1 1],4); % x^2 + x + 1 in GF(16)
roots16 = roots(gf16poly); % Roots in GF(16)
checkanswer4 = polyval(gf4poly,roots4); % Zero vector
checkanswer16 = polyval(gf16poly,roots16); % Zero vector

The roots of the polynomial do not exist in GF(2), so noroots is an empty
array. However, the roots of the polynomial exist in GF(4) as well as in
GF(16), so roots4 and roots16 are nonempty.

Notice that roots4 and roots16 are not equal to each other. They differ in
these ways:
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• roots4 is a GF(4) array, while roots16 is a GF(16) array. MATLAB keeps
track of the underlying field of a Galois array.

• The array elements in roots4 and roots16 differ because they use
representations with respect to different primitive polynomials. For
example, 2 (which represents a primitive element) is an element of the
vector roots4 because the default primitive polynomial for GF(4) is the
same polynomial that gf4poly represents. On the other hand, 2 is not an
element of roots16 because the primitive element of GF(16) is not a root of
the polynomial that gf16poly represents.

Minimal Polynomials. The minimal polynomial of an element of GF(2m)
is the smallest degree nonzero binary-coefficient polynomial having that
element as a root in GF(2m). To find the minimal polynomial of an element or
a column vector of elements, use the minpol function.

The code below finds that the minimal polynomial of gf(6,4) is D2 + D + 1
and then checks that gf(6,4) is indeed among the roots of that polynomial in
the field GF(16).

m = 4;
e = gf(6,4);
em = minpol(e) % Find minimal polynomial of e. em is in GF(2).

emr = roots(gf([0 0 1 1 1],m)) % Roots of D^2+D+1 in GF(2^m)

The output is

em = GF(2) array.

Array elements =

0 0 1 1 1

emr = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

6
7
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To find out which elements of a Galois field share the same minimal
polynomial, use the cosets function.

Manipulating Galois Variables

• “Section Overview” on page 3-146

• “Determining Whether a Variable Is a Galois Array” on page 3-146

• “Extracting Information from a Galois Array” on page 3-146

Section Overview. This section describes techniques for manipulating
Galois variables or for transferring information between Galois arrays and
ordinary MATLAB arrays.

Note These techniques are particularly relevant if you write MATLAB file
functions that process Galois arrays. For an example of this type of usage,
enter edit gf/conv in the Command Window and examine the first several
lines of code in the editor window.

Determining Whether a Variable Is a Galois Array. To find out whether
a variable is a Galois array rather than an ordinary MATLAB array, use the
isa function. An illustration is below.

mlvar = eye(3);
gfvar = gf(mlvar,3);
no = isa(mlvar,'gf'); % False because mlvar is not a Galois array
yes = isa(gfvar,'gf'); % True because gfvar is a Galois array

Extracting Information from a Galois Array. To extract the array
elements, field order, or primitive polynomial from a variable that is a Galois
array, append a suffix to the name of the variable. The table below lists the
exact suffixes, which are independent of the name of the variable.
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Information Suffix Output Value

Array elements .x MATLAB array of type
uint16 that contains
the data values from
the Galois array.

Field order .m Integer of type double
that indicates that
the Galois array is in
GF(2^m).

Primitive polynomial .prim_poly Integer of type uint32
that represents the
primitive polynomial.
The representation
is similar to the
description in “How
Integers Correspond to
Galois Field Elements”
on page 3-120.

Note If the output value is an integer data type and you want to convert it to
double for later manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr
uses a vector of binary coefficients of a polynomial to create a Galois array
in an extension field. Another part of the example retrieves the primitive
polynomial for the field and converts it to a binary vector representation
having the appropriate number of bits.

% Check that e solves its own minimal polynomial.
e = gf(6,4); % An element of GF(16)
emp = minpol(e); % The minimal polynomial, emp, is in GF(2).
empr = roots(gf(emp.x,e.m)); % Find roots of emp in GF(16).

% Check that the primitive element gf(2,m) is
% really a root of the primitive polynomial for the field.
primpoly_int = double(e.prim_poly);
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mval = e.m;
primpoly_vect = gf(de2bi(primpoly_int,mval+1,'left-msb'),mval);
containstwo = roots(primpoly_vect); % Output vector includes 2.

Converting Galois Array to Doubles

a = gf([1,0])
b = double(a.x) %a.x is in uint16

MATLAB returns the following:

a = GF(2) array.

Array elements =

1 0

b =

1 0

Speed and Nondefault Primitive Polynomials
The section Specifying the Primitive Polynomial on page 121 described how to
represent elements of a Galois field with respect to a primitive polynomial
of your choice. This section describes how you can increase the speed of
computations involving a Galois array that uses a primitive polynomial other
than the default primitive polynomial. The technique is recommended if you
perform many such computations.

The mechanism for increasing the speed is a data file, userGftable.mat, that
some computational functions use to avoid performing certain computations
repeatedly. To take advantage of this mechanism for your combination of field
order (m) and primitive polynomial (prim_poly):

1 Navigate in the MATLAB application to a folder to which you have write
permission. You can use either the cd function or the Current Folder
feature to navigate.

2 Define m and prim_poly as workspace variables. For example:
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m = 3; prim_poly = 13; % Examples of valid values

3 Invoke the gftable function:

gftable(m,prim_poly); % If you previously defined m and prim_poly

The function revises or creates userGftable.mat in your current working
folder to include data relating to your combination of field order and primitive
polynomial. After you initially invest the time to invoke gftable, subsequent
computations using those values of m and prim_poly should be faster.

Note If you change your current working directory after invoking
gftable, you must place userGftable.mat on your MATLAB path to
ensure that MATLAB can see it. Do this by using the addpath command
to prefix the directory containing userGftable.mat to your MATLAB
path. If you have multiple copies of userGftable.mat on your path, use
which('userGftable.mat','-all') to find out where they are and which
one MATLAB is using.

To see how much gftable improves the speed of your computations, you can
surround your computations with the tic and toc functions. See the gftable
reference page for an example.
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Galois Fields of Odd Characteristic
A Galois field is an algebraic field having pm elements, where p is prime and m
is a positive integer. This chapter describes how to work with Galois fields in
which p is odd. To work with Galois fields having an even number of elements,
see Galois Field Computations. The sections in this chapter are as follows.

• “Galois Field Terminology” on page 3-150

• “Representing Elements of Galois Fields” on page 3-151

• “Default Primitive Polynomials” on page 3-154

• “Converting and Simplifying Element Formats” on page 3-155

• “Arithmetic in Galois Fields” on page 3-159

• “Polynomials over Prime Fields” on page 3-161

• “Other Galois Field Functions” on page 3-166

• “Selected Bibliography for Galois Fields” on page 3-166

Galois Field Terminology
Throughout this section, p is an odd prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the
literature. The definitions adopted here appear in van Lint [5].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero
elements of GF(pm). This means that every nonzero element of the field
can be expressed as the primitive element raised to some integer power.
Primitive elements are called A throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some
primitive element of GF(pm). As a consequence, it has degree m and is
irreducible.
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Representing Elements of Galois Fields

• “Section Overview” on page 3-151

• “Exponential Format” on page 3-151

• “Polynomial Format” on page 3-152

• “List of All Elements of a Galois Field” on page 3-153

• “Nonuniqueness of Representations” on page 3-154

Section Overview. This section discusses how to represent Galois field
elements using this toolbox’s exponential format and polynomial format. It
also describes a way to list all elements of the Galois field, because some
functions use such a list as an input argument. Finally, it discusses the
nonuniqueness of representations of Galois field elements.

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least 2, GF(pm) is called an extension field. Integers alone
cannot represent the elements of GF(pm) in a straightforward way. MATLAB
technical computing software uses two main conventions for representing
elements of GF(pm): the exponential format and the polynomial format.

Note Both the exponential format and the polynomial format are relative to
your choice of a particular primitive element A of GF(pm).

Exponential Format. This format uses the property that every nonzero
element of GF(pm) can be expressed as Ac for some integer c between 0 and
pm-2. Higher exponents are not needed, because the theory of Galois fields
implies that every nonzero element of GF(pm) satisfies the equation xq-1 = 1
where q = pm.

The use of the exponential format is shown in the table below.

3-151



3 System Design

Element of GF(pm) MATLAB Representation of the
Element

0 -Inf

A0 = 1 0

A1 1

... ...

Aq-2 where q = pm q-2

Although -Inf is the standard exponential representation of the zero element,
all negative integers are equivalent to -Inf when used as input arguments
in exponential format. This equivalence can be useful; for example, see the
concise line of code at the end of the section “Default Primitive Polynomials”
on page 3-154.

Note The equivalence of all negative integers and -Inf as exponential
formats means that, for example, -1 does not represent A-1, the multiplicative
inverse of A. Instead, -1 represents the zero element of the field.

Polynomial Format. The polynomial format uses the property that every
element of GF(pm) can be expressed as a polynomial in A with exponents
between 0 and m-1, and coefficients in GF(p). In the polynomial format, the
element

A(1) + A(2) A + A(3) A2 + ... + A(m) Am-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note The Galois field functions in this toolbox represent a polynomial as a
vector that lists the coefficients in order of ascending powers of the variable.
This is the opposite of the order that other MATLAB functions use.
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List of All Elements of a Galois Field. Some Galois field functions in this
toolbox require an argument that lists all elements of an extension field
GF(pm). This is again relative to a particular primitive element A of GF(pm).
The proper format for the list of elements is that of a matrix having pm rows,
one for each element of the field. The matrix has m columns, one for each
coefficient of a power of A in the polynomial format shown in “Polynomial
Format” on page 3-152 above. The first row contains only zeros because it
corresponds to the zero element in GF(pm). If k is between 2 and pm, then the
kth row specifies the polynomial format of the element Ak-2.

The minimal polynomial of A aids in the computation of this matrix, because
it tells how to express Am in terms of lower powers of A. For example, the
table below lists the elements of GF(32), where A is a root of the primitive
polynomial 2 + 2x + x2. This polynomial allows repeated use of the substitution

A2 = -2 - 2A = 1 + A

when performing the computations in the middle column of the table.

Elements of GF(9)

Exponential
Format

Polynomial Format Row of MATLAB
Matrix of Elements

A-Inf 0 0 0

A0 1 1 0

A1 A 0 1

A2 1+A 1 1

A3 A + A2 = A + 1 + A = 1 + 2A 1 2

A4 A + 2A2 = A + 2 + 2A = 2 2 0

A5 2A 0 2

A6 2A2 = 2 + 2A 2 2

A7 2A + 2A2 = 2A + 2 + 2A = 2 + A 2 1
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Example

An automatic way to generate the matrix whose rows are in the third column
of the table above is to use the code below.

p = 3; m = 2;
% Use the primitive polynomial 2 + 2x + x^2 for GF(9).
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);

The gftuple function is discussed in more detail in “Converting and
Simplifying Element Formats” on page 3-155.

Nonuniqueness of Representations. A given field has more than
one primitive element. If two primitive elements have different minimal
polynomials, then the corresponding matrices of elements will have their rows
in a different order. If the two primitive elements share the same minimal
polynomial, then the matrix of elements of the field is the same.

Note You can use whatever primitive element you want, as long as you
understand how the inputs and outputs of Galois field functions depend on
the choice of some primitive polynomial. It is usually best to use the same
primitive polynomial throughout a given script or function.

Other ways in which representations of elements are not unique arise from
the equations that Galois field elements satisfy. For example, an exponential
format of 8 in GF(9) is really the same as an exponential format of 0, because
A8 = 1 = A0 in GF(9). As another example, the substitution mentioned just
before the table Elements of GF(9) on page 3-153 shows that the polynomial
format [0 0 1] is really the same as the polynomial format [1 1].

Default Primitive Polynomials
This toolbox provides a default primitive polynomial for each extension field.
You can retrieve this polynomial using the gfprimdf function. The command

prim_poly = gfprimdf(m,p); % If m and p are already defined
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produces the standard row-vector representation of the default minimal
polynomial for GF(pm).

For example, the command below shows that the default primitive polynomial
for GF(9) is 2 + x + x2, not the polynomial used in “List of All Elements of a
Galois Field” on page 3-153.

poly1=gfprimdf(2,3);

poly1 =

2 1 1

To generate a list of elements of GF(pm) using the default primitive
polynomial, use the command

field = gftuple([-1:p^m-2]',m,p);

Converting and Simplifying Element Formats

• “Converting to Simplest Polynomial Format” on page 3-155

• “Example: Generating a List of Galois Field Elements” on page 3-157

• “Converting to Simplest Exponential Format” on page 3-158

Converting to Simplest Polynomial Format. The gftuple function
produces the simplest polynomial representation of an element of GF(pm),
given either an exponential representation or a polynomial representation of
that element. This can be useful for generating the list of elements of GF(pm)
that other functions require.

Using gftuple requires three arguments: one representing an element of
GF(pm), one indicating the primitive polynomial that MATLAB technical
computing software should use when computing the output, and the prime
p. The table below indicates how gftuple behaves when given the first two
arguments in various formats.
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Behavior of gftuple Depending on Format of First Two Inputs

How to Specify
Element

How to Indicate
Primitive Polynomial

What gftuple
Produces

Exponential format;
c = any integer

Integer m > 1 Polynomial format of
Ac, where A is a root of
the default primitive
polynomial for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here

Exponential format;
c = any integer

Vector of coefficients of
primitive polynomial

Polynomial format of
Ac, where A is a root
of the given primitive
polynomial

Example: polynomial = gfprimdf(2,3); tp =
gftuple(6,polynomial,3); % c = 6 here

Polynomial format of
any degree

Integer m > 1 Polynomial format
of degree < m, using
default primitive
polynomial for GF(pm)
to simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);

Polynomial format of
any degree

Vector of coefficients of
primitive polynomial

Polynomial format
of degree < m, using
the given primitive
polynomial for GF(pm)
to simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0
1],polynomial,3);

The four examples that appear in the table above all produce the same vector
tp = [2, 1], but their different inputs to gftuple correspond to the lines of
the table. Each example expresses the fact that A6 = 2+A, where A is a root of
the (default) primitive polynomial 2 + x+ x2 for GF(32).
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Example

This example shows how gfconv and gftuple combine to multiply two
polynomial-format elements of GF(34). Initially, gfconv multiplies the
two polynomials, treating the primitive element as if it were a variable.
This produces a high-order polynomial, which gftuple simplifies using the
polynomial equation that the primitive element satisfies. The final result is
the simplest polynomial format of the product.

p = 3; m = 4;
a = [1 2 0 1]; b = [2 2 1 2];
notsimple = gfconv(a,b,p) % a times b, using high powers of alpha
simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

The output is below.

notsimple =

2 0 2 0 0 1 2

simple =

2 1 0 1

Example: Generating a List of Galois Field Elements. This example
applies the conversion functionality to the task of generating a matrix that
lists all elements of a Galois field. A matrix that lists all field elements is an
input argument in functions such as gfadd and gfmul. The variables field1
and field2 below have the format that such functions expect.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field1 = gftuple([-1:p^m-2]',m,p);

prim_poly = gfprimdf(m,p); % Or any primitive polynomial
% for GF(p^m)
field2 = gftuple([-1:p^m-2]',prim_poly,p);
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Converting to Simplest Exponential Format. The same function gftuple
also produces the simplest exponential representation of an element of GF(pm),
given either an exponential representation or a polynomial representation of
that element. To retrieve this output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in the table Behavior of
gftuple Depending on Format of First Two Inputs on page 3-156. In addition,
the variable expformat contains the simplest exponential format of the
element represented in polyformat. It is simplest in the sense that the
exponent is either -Inf or a number between 0 and pm-2.

Example

To recover the exponential format of the element 2 + A that the previous
section considered, use the commands below. In this case, polyformat
contains redundant information, while expformat contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

2 1

expformat =

6

This output appears at first to contradict the information in the table
Elements of GF(9) on page 3-153, but in fact it does not. The table uses
a different primitive element; two plus that primitive element has the
polynomial and exponential formats shown below.

prim_poly = [2 2 1];
[polyformat2, expformat2] = gftuple([2 1],prim_poly,3)

The output below reflects the information in the bottom line of the table.

3-158



Error Detection and Correction

polyformat2 =

2 1

expformat2 =

7

Arithmetic in Galois Fields

• “Section Overview” on page 3-159

• “Arithmetic in Prime Fields” on page 3-159

• “Arithmetic in Extension Fields” on page 3-160

Section Overview. You can add, subtract, multiply, and divide elements of
Galois fields using the functions gfadd, gfsub, gfmul, and gfdiv, respectively.
Each of these functions has a mode for prime fields and a mode for extension
fields.

Arithmetic in Prime Fields. Arithmetic in GF(p) is the same as arithmetic
modulo p. The functions gfadd, gfmul, gfsub, and gfdiv accept two
arguments that represent elements of GF(p) as integers between 0 and p-1.
The third argument specifies p.

Example: Addition Table for GF(5)

The code below constructs an addition table for GF(5). If a and b are between
0 and 4, then the element gfp_add(a+1,b+1) represents the sum a+b in
GF(5). For example, gfp_add(3,5) = 1 because 2+4 is 1 modulo 5.

p = 5;
row = 0:p-1;
table = ones(p,1)*row;
gfp_add = gfadd(table,table',p)

The output for this example follows.
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gfp_add =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

Other values of p produce tables for different prime fields GF(p). Replacing
gfadd by gfmul, gfsub, or gfdiv produces a table for the corresponding
arithmetic operation in GF(p).

Arithmetic in Extension Fields. The same arithmetic functions can add
elements of GF(pm) when m > 1, but the format of the arguments is more
complicated than in the case above. In general, arithmetic in extension fields
is more complicated than arithmetic in prime fields; see the works listed
in “Selected Bibliography for Galois Fields” on page 3-166 for details about
how the arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and
gfdiv use the first two arguments to represent elements of GF(pm) in
exponential format. The third argument, which is required, lists all elements
of GF(pm) as described in “List of All Elements of a Galois Field” on page
3-153. The result is in exponential format.

Example: Addition Table for GF(9)

The code below constructs an addition table for GF(32), using exponential
formats relative to a root of the default primitive polynomial for GF(9). If a
and b are between -1 and 7, then the element gfpm_add(a+2,b+2) represents
the sum of Aa and Ab in GF(9). For example, gfpm_add(4,6) = 5 because

A2 + A4 = A5

Using the fourth and sixth rows of the matrix field, you can verify that

A2 + A4 = (1 + 2A) + (2 + 0A) = 3 + 2A = 0 + 2A = A5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).
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field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.
row = -1:p^m-2;
table = ones(p^m,1)*row;
gfpm_add = gfadd(table,table',field)

The output is below.

gfpm_add =

-Inf 0 1 2 3 4 5 6 7
0 4 7 3 5 -Inf 2 1 6
1 7 5 0 4 6 -Inf 3 2
2 3 0 6 1 5 7 -Inf 4
3 5 4 1 7 2 6 0 -Inf
4 -Inf 6 5 2 0 3 7 1
5 2 -Inf 7 6 3 1 4 0
6 1 3 -Inf 0 7 4 2 5
7 6 2 4 -Inf 1 0 5 3

Note If you used a different primitive polynomial, then the tables would look
different. This makes sense because the ordering of the rows and columns of
the tables was based on that particular choice of primitive polynomial and not
on any natural ordering of the elements of GF(9).

Other values of p and m produce tables for different extension fields GF(p^m).
Replacing gfadd by gfmul, gfsub, or gfdiv produces a table for the
corresponding arithmetic operation in GF(p^m).

Polynomials over Prime Fields

• “Section Overview” on page 3-162

• “Cosmetic Changes of Polynomials” on page 3-162

• “Polynomial Arithmetic” on page 3-163

• “Characterization of Polynomials” on page 3-163

• “Roots of Polynomials” on page 3-164
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Section Overview. A polynomial over GF(p) is a polynomial whose
coefficients are elements of GF(p). Communications System Toolbox software
provides functions for

• Changing polynomials in cosmetic ways

• Performing polynomial arithmetic

• Characterizing polynomials as primitive or irreducible

• Finding roots of polynomials in a Galois field

Note The Galois field functions in this toolbox represent a polynomial
over GF(p) for odd values of p as a vector that lists the coefficients in order
of ascending powers of the variable. This is the opposite of the order that
other MATLAB functions use.

Cosmetic Changes of Polynomials. To display the traditionally formatted
polynomial that corresponds to a row vector containing coefficients, use
gfpretty. To truncate a polynomial by removing all zero-coefficient terms
that have exponents higher than the degree of the polynomial, use gftrunc.
For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])
gfpretty(polynom)

The output is below.

polynom =

1 20 394 10 0 0 29 3

2 3 6 7
1 + 20 X + 394 X + 10 X + 29 X + 3 X

Note If you do not use a fixed-width font, then the spacing in the display
might not look correct.
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Polynomial Arithmetic. The functions gfadd and gfsub add and subtract,
respectively, polynomials over GF(p). The gfconv function multiplies
polynomials over GF(p). The gfdeconv function divides polynomials in GF(p),
producing a quotient polynomial and a remainder polynomial. For example,
the commands below show that 2 + x + x2 times 1 + x over the field GF(3) is
2 + 2x2 + x3.

a = gfconv([2 1 1],[1 1],3)
[quot, remd] = gfdeconv(a,[2 1 1],3)

The output is below.

a =

2 0 2 1

quot =

1 1

remd =

0

The previously discussed functions gfadd and gfsub add and subtract,
respectively, polynomials. Because it uses a vector of coefficients to represent
a polynomial, MATLAB does not distinguish between adding two polynomials
and adding two row vectors elementwise.

Characterization of Polynomials. Given a polynomial over GF(p), the
gfprimck function determines whether it is irreducible and/or primitive. By
definition, if it is primitive then it is irreducible; however, the reverse is not
necessarily true. The gfprimdf and gfprimfd functions return primitive
polynomials.

Given an element of GF(pm), the gfminpol function computes its minimal
polynomial over GF(p).

3-163



3 System Design

Example

For example, the code below reflects the irreducibility of all minimal
polynomials. However, the minimal polynomial of a nonprimitive element is
not a primitive polynomial.

p = 3; m = 4;
% Use default primitive polynomial here.

prim_poly = gfminpol(1,m,p);
ckprim = gfprimck(prim_poly,p);
% ckprim = 1, since prim_poly represents a primitive polynomial.

notprimpoly = gfminpol(5,m,p);
cknotprim = gfprimck(notprimpoly,p);
% cknotprim = 0 (irreducible but not primitive)
% since alpha^5 is not a primitive element when p = 3.

ckreducible = gfprimck([0 1 1],p);
% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials. Given a polynomial over GF(p), the gfroots function
finds the roots of the polynomial in a suitable extension field GF(pm). There
are two ways to tell MATLAB the degree m of the extension field GF(pm), as
shown in the following table.

Formats for Second Argument of gfroots

Second Argument Represents

A positive integer m as in GF(pm). MATLAB uses the
default primitive polynomial in its
computations.

A row vector A primitive polynomial for GF(pm).
Here m is the degree of this primitive
polynomial.
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Example: Roots of a Polynomial in GF(9)

The code below finds roots of the polynomial 1 + x2 + x3 in GF(9) and then
checks that they are indeed roots. The exponential format of elements of
GF(9) is used throughout.

p = 3; m = 2;
field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)
% Use default primitive polynomial here.
polynomial = [1 0 1 1]; % 1 + x^2 + x^3
rts =gfroots(polynomial,m,p) % Find roots in exponential format
% Check that each one is actually a root.
for ii = 1:3

root = rts(ii);
rootsquared = gfmul(root,root,field);
rootcubed = gfmul(root,rootsquared,field);
answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);
% Recall that 1 is really alpha to the zero power.
% If answer = -Inf, then the variable root represents
% a root of the polynomial.

end
answer
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The output shows that A0 (which equals 1), A5, and A7 are roots.

roots =

0
5
7

answer =

-Inf -Inf -Inf

See the reference page for gfroots to see how gfroots can also provide you
with the polynomial formats of the roots and the list of all elements of the field.

Other Galois Field Functions
See the online reference pages for information about these other Galois field
functions in Communications System Toolbox software:

• gfcosets, which produces cyclotomic cosets

• gffilter, which filters data using GF(p) polynomials

• gfprimfd, which finds primitive polynomials

• gfrank, which computes the rank of a matrix over GF(p)

• gfrepcov, which converts one binary polynomial representation to another

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading,
Mass., Addison-Wesley, 1983.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley,
1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.
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[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.
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Interleaving

In this section...

“Block Interleaving” on page 3-168

“Convolutional Interleaving” on page 3-174

“Selected Bibliography for Interleaving” on page 3-187

Block Interleaving

• “Block Interleaving Features” on page 3-168

• “Improve Error Rate Using Block Interleaving in MATLAB” on page 3-170

• “Improve Error Rate Using Block Interleaving in Simulink” on page 3-171

Block Interleaving Features
A block interleaver accepts a set of symbols and rearranges them, without
repeating or omitting any of the symbols in the set. The number of symbols in
each set is fixed for a given interleaver. The interleaver’s operation on a set of
symbols is independent of its operation on all other sets of symbols.

An interleaver permutes symbols according to a mapping. A corresponding
deinterleaver uses the inverse mapping to restore the original sequence of
symbols. Interleaving and deinterleaving can be useful for reducing errors
caused by burst errors in a communication system.

Each interleaver function has a corresponding deinterleaver function.
In typical usage of the interleaver/deinterleaver pairs, the inputs of the
deinterleaver match those of the interleaver, except for the data being
rearranged.

A block interleaver accepts a set of symbols and rearranges them, without
repeating or omitting any of the symbols in the set. The number of symbols in
each set is fixed for a given interleaver.

The set of block interleavers in this toolbox includes a general block
interleaver as well as several special cases. Each special-case interleaver
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function uses the same computational code that the general block interleaver
function uses, but provides a syntax that is more suitable for the special case.
The interleaver functions are described below.

Type of
Interleaver

Interleaver Function Description

General block
interleaver

intrlv Uses the permutation table
given explicitly as an input
argument.

Algebraic
interleaver

algintrlv Derives a permutation
table algebraically, using
the Takeshita-Costello
or Welch-Costas method.
These methods are described
in [4].

Helical scan
interleaver

helscanintrlv Fills a matrix with data
row by row and then sends
the matrix contents to the
output in a helical fashion.

Matrix
interleaver

matintrlv Fills a matrix with data
elements row by row and
then sends the matrix
contents to the output
column by column.

Random
interleaver

randintrlv Chooses a permutation table
randomly using the initial
state input that you provide.

Types of Block Interleavers. The set of block interleavers in this library
includes a general interleaver/deinterleaver pair as well as several special
cases. Each special-case block uses the same computational code that its more
general counterpart uses, but provides an interface that is more suitable for
the special case.

The Matrix Interleaver block accomplishes block interleaving by filling a
matrix with the input symbols row by row and then sending the matrix
contents to the output port column by column. For example, if the interleaver
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uses a 2-by-3 matrix to do its internal computations, then for an input of
[1 2 3 4 5 6], the block produces an output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using
the Initial seed parameter that you provide in the block mask. By using the
same Initial seed value in the corresponding Random Deinterleaver block,
you can restore the permuted symbols to their original ordering.

The Algebraic Interleaver block uses a permutation table that is algebraically
derived. It supports Takeshita-Costello interleavers and Welch-Costas
interleavers. These interleavers are described in .

Improve Error Rate Using Block Interleaving in MATLAB
The following example illustrates how an interleaver improves the error
rate in a communication system whose channel produces a burst of errors.
A random interleaver rearranges the bits of numerous codewords before two
adjacent codewords are each corrupted by three errors.

Three errors exceed the error-correction capability of the Hamming code.
However, the example shows that when the Hamming code is combined with
an interleaver, this system is able to recover the original message despite the
6-bit burst of errors. The improvement in performance occurs because the
interleaving effectively spreads the errors among different codewords so that
the number of errors per codeword is within the error-correction capability
of the code.

st1 = 27221; st2 = 4831; % States for random number generator
n = 7; k = 4; % Parameters for Hamming code
msg = randint(k*500,1,2,st1); % Data to encode
code = encode(msg,n,k,'hamming/binary'); % Encoded data
% Create a burst error that will corrupt two adjacent codewords.
errors = zeros(size(code)); errors(n-2:n+3) = [1 1 1 1 1 1];

% With Interleaving
%------------------
inter = randintrlv(code,st2); % Interleave.
inter_err = bitxor(inter,errors); % Include burst error.
deinter = randdeintrlv(inter_err,st2); % Deinterleave.
decoded = decode(deinter,n,k,'hamming/binary'); % Decode.
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disp('Number of errors and error rate, with interleaving:');
[number_with,rate_with] = biterr(msg,decoded) % Error statistics

% Without Interleaving
%---------------------
code_err = bitxor(code,errors); % Include burst error.
decoded = decode(code_err,n,k,'hamming/binary'); % Decode.
disp('Number of errors and error rate, without interleaving:');
[number_without,rate_without] = biterr(msg,decoded) % Error statistics

The output from the example follows.

Number of errors and error rate, with interleaving:

number_with =

0

rate_with =

0

Number of errors and error rate, without interleaving:

number_without =

4

rate_without =

0.0020

Improve Error Rate Using Block Interleaving in Simulink
The following example shows how to use an interleaver to improve the error
rate when the channel produces bursts of errors.
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Before running the model, you must create a binary vector that simulates
bursts of errors, as described in . The Signal From Workspace block imports
this vector from the MATLAB workspace into the model, where the Logical
Operator block performs an XOR of the vector with the signal.

To open the completed model, type doc_interleaver at the MATLAB
command line. To build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Check the box next to Frame-based outputs.

- Set Samples per frame to 4.

• Hamming Encoder, in the Block sublibrary of the Error Detection and
Correction library. Use default parameters

• Buffer, in the Buffers sublibrary of the Signal Management library in DSP
System Toolbox

- Set Output buffer size (per channel) to 84.

• Random Interleaver, in the Block sublibrary of the Interleaving library in
Communications System Toolbox

- Set Number of elements to 84.

• Logical Operator, in the Simulink Math Operations library

- Set Operator to XOR.

• Signal From Workspace, in the Signal Processing Sources library

- Set Signal to errors.

- Set Sample time to 4/7.
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- Set Samples per frame to 84.

• Random Deinterleaver, in the Block sublibrary of the Interleaving library
in Communications System Toolbox

- Set Number of elements to 84.

• Buffer, in the Buffers sublibrary of the Signal Management library in DSP
System Toolbox

- Set Output buffer size (per channel) to 7.

• Hamming Decoder, in the Block sublibrary of the Error Detection and
Correction library. Use default parameters.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to (4/7)*84.

- Set Computation delay to 100.

- Set Output data to Port.

• Display, in the Simulink Sinks library. Use default parameters.

Select Configuration parameters from the model’s Simulation menu and
set Stop time to length(errors).

Creating the Vector of Errors. Before running the model, use the following
code to create a binary vector in the MATLAB workspace. The model uses
this vector to simulate bursts of errors. The vector contains blocks of three 1s,
representing bursts of errors, at random intervals. The distance between two
consecutive blocks of 1s is a random integer between 1 and 80.

errors=zeros(1,10^4);
n=1;
while n<10^4-80;
n=n+floor(79*rand(1))+3;
errors(n:n+2)=[1 1 1];
end

To determine the ratio of the number of 1s to the total number of symbols
in the vector errors, enter

sum(errors)/length(errors)
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Your answer should be approximately 3/43, or .0698, since after each
sequence of three 1s, the expected distance to the next sequence of 1s is
40. Consequently, you expect to see three 1s in 43 terms of the sequence.
If there were no error correction in the model, the bit error rate would be
approximately .0698.

When you run a simulation with the model, the error rate is approximately
.019, which shows the improvement due to error correction and interleaving.
You can see the effect of interleaving by deleting the Random Interleaver
and Random Deinterleaver blocks from the model, connecting the lines, and
running another simulation. The bit error rate is higher without interleaving
because the Hamming code can only correct one error in each codeword.

Convolutional Interleaving

• “Convolutional Interleaving Features” on page 3-174

• “Delays of Convolutional Interleavers” on page 3-176

• “Convolutional Interleaving and Deinterleaving Using a Sequence of
Consecutive Integers in MATLAB” on page 3-181

• “Convolutional Interleaving and Deinterleaving Using a Sequence of
Consecutive Integers in Simulink” on page 3-184

Convolutional Interleaving Features
A convolutional interleaver consists of a set of shift registers, each with a
fixed delay. In a typical convolutional interleaver, the delays are nonnegative
integer multiples of a fixed integer (although a general multiplexed interleaver
allows unrestricted delay values). Each new symbol from an input vector feeds
into the next shift register and the oldest symbol in that register becomes part
of the output vector. A convolutional interleaver has memory; that is, its
operation depends not only on current symbols but also on previous symbols.

The schematic below depicts the structure of a general convolutional
interleaver by showing the set of shift registers and their delay values D(1),
D(2),..., D(N). The kth shift register holds D(k) symbols, where k = 1,2,...,N.
The convolutional interleaving functions in this toolbox have input arguments
that indicate the number of shift registers and the delay for each shift register.
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Communications System Toolbox implements convolutional interleaving
functionality using Simulink blocks, System objects, and MATLAB functions.

The set of convolutional interleavers in this product includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case function uses the same computational code that its more general
counterpart uses, but provides a syntax that is more suitable for the special
case. The special cases are described below.

Type of
Interleaver

Interleaving Function Description

General
multiplexed
interleaver

muxintrlv Allows unrestricted delay
values for the set of shift
registers.

Convolutional
interleaver

convintrlv The delay values for the
set of shift registers
are nonnegative integer
multiples of a fixed integer
that you specify.

Helical
interleaver

helintrlv Fills an array with input
symbols in a helical fashion
and empties the array row
by row.
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The helscanintrlv function and the helintrlv function both use a helical
array for internal computations. However, the two functions have some
important differences:

• helintrlv uses an unlimited-row array, arranges input symbols in the
array along columns, outputs some symbols that are not from the current
input, and leaves some input symbols in the array without placing them in
the output.

• helscanintrlv uses a fixed-size matrix, arranges input symbols in the
array across rows, and outputs all the input symbols without using any
default values or values from a previous call.

Types of Convolutional Interleavers. The set of convolutional interleavers
in this library includes a general interleaver/deinterleaver pair as well as
several special cases. Each special-case block uses the same computational
code that its more general counterpart uses, but provides an interface that
is more suitable for the special case.

The most general block in this library is the General Multiplexed Interleaver
block, which allows arbitrary delay values for the set of shift registers. To
implement the preceding schematic using this block, use an Interleaver
delay parameter of [D(1); D(2); ...; D(N)].

More specific is the Convolutional Interleaver block, in which the delay value
for the kth shift register is (k-1) times the block’s Register length step
parameter. The number of shift registers in this block is the value of the
Rows of shift registers parameter.

Finally, the Helical Interleaver block supports a special case of convolutional
interleaving that fills an array with symbols in a helical fashion and empties
the array row by row. To configure this interleaver, use the Number of
columns of helical array parameter to set the width of the array, and use
the Group size and Helical array step size parameters to determine
how symbols are placed in the array. See the reference page for the Helical
Interleaver block for more details and an example.

Delays of Convolutional Interleavers
After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind
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the original sequence. The delay, measured in symbols, between the original
and restored sequences is indicated in the table below. The variable names
in the second column (delay, nrows, slope, col, ngrp, and stp) refer to the
inputs named on each function’s reference page.

Delays of Interleaver/Deinterleaver Pairs

Interleaver/Deinterleaver
Pair

Delay Between Original and Restored
Sequences

muxintrlv, muxdeintrlv length(delay)*max(delay)

convintrlv, convdeintrlv nrows*(nrows-1)*slope

helintrlv, heldeintrlv col*ngrp*ceil(stp*(col-1)/ngrp)

Delays of Convolutional Interleavers. After a sequence of symbols
passes through a convolutional interleaver and a corresponding convolutional
deinterleaver, the restored sequence lags behind the original sequence. The
delay, measured in symbols, between the original and restored sequences is

(Number of shift registers) * (Maximum delay among all shift registers)

for the most general multiplexed interleaver. If your model incurs an
additional delay between the interleaver output and the deinterleaver input,
the restored sequence lags behind the original sequence by the sum of the
additional delay and the amount in the preceding formula.

Note For proper synchronization, the delay in your model between the
interleaver output and the deinterleaver input must be an integer multiple
of the number of shift registers. You can use the DSP System Toolbox Delay
block to adjust delays manually, if necessary.

Convolutional Interleaver block

In the special case implemented by the Convolutional
Interleaver/Convolutional Deinterleaver pair, the number of shift
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registers is the Rows of shift registers parameter, while the maximum
delay among all shift registers is

B * (N-1)

where B is the Register length step parameter and N is the Rows of shift
registers parameter.

Helical Interleaver block

In the special case implemented by the Helical Interleaver/Helical
Deinterleaver pair, the delay between the restored sequence and the original
sequence is

CN
s C

N
( )−⎡

⎢⎢
⎤
⎥⎥

1

where C is the Number of columns in helical array parameter, N is the
Group size parameter, and s is the Helical array step size parameter.

Effect of Delays on Recovery of Convolutionally Interleaved Data
Using MATLAB. If you use a convolutional interleaver followed by a
corresponding convolutional deinterleaver, then a nonzero delay means that
the recovered data (that is, the output from the deinterleaver) is not the same
as the original data (that is, the input to the interleaver). If you compare the
two data sets directly, then you must take the delay into account by using
appropriate truncating or padding operations.

Here are some typical ways to compensate for a delay of D in an
interleaver/deinterleaver pair:

• Interleave a version of the original data that is padded with D extra
symbols at the end. Before comparing the original data with the recovered
data, omit the first D symbols of the recovered data. In this approach, all
the original symbols appear in the recovered data.

• Before comparing the original data with the recovered data, omit the last D
symbols of the original data and the first D symbols of the recovered data.
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In this approach, some of the original symbols are left in the deinterleaver’s
shift registers and do not appear in the recovered data.

The following code illustrates these approaches by computing a symbol error
rate for the interleaving/deinterleaving operation.

x = randint(20,1,64); % Original data
nrows = 3; slope = 2; % Interleaver parameters
D = nrows*(nrows-1)*slope; % Delay of interleaver/deinterleaver pair

% First approach.
x_padded = [x; zeros(D,1)]; % Pad x at the end before interleaving.
a1 = convintrlv(x_padded,nrows,slope); % Interleave padded data.
b1 = convdeintrlv(a1,nrows,slope)
b1_trunc = b1(D+1:end); % Remove first D symbols.
ser1 = symerr(x,b1_trunc) % Compare original data with truncation.

% Second approach.
a2 = convintrlv(x,nrows,slope); % Interleave original data.
b2 = convdeintrlv(a2,nrows,slope)
x_trunc = x(1:end-D); % Remove last D symbols.
b2_trunc = b2(D+1:end); % Remove first D symbols.
ser2 = symerr(x_trunc,b2_trunc) % Compare the two truncations.

The output is shown below. The zero values of ser1 and ser2 indicate that the
script correctly aligned the original and recovered data before computing the
symbol error rates. However, notice from the lengths of b1 and b2 that the two
approaches to alignment result in different amounts of deinterleaved data.

b1 =

0
0
0
0
0
0
0
0
0
0
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0
0

59
42
1

28
52
54
43
8

56
5

35
37
48
17
28
62
10
31
61
39

ser1 =

0

b2 =

0
0
0
0
0
0
0
0
0
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0
0
0

59
42
1

28
52
54
43
8

ser2 =

0

Combining Interleaving Delays and Other Delays. If you use
convolutional interleavers in a script that incurs an additional delay, d,
between the interleaver output and the deinterleaver input (for example,
a delay from a filter), then the restored sequence lags behind the original
sequence by the sum of d and the amount from the table Delays of
Interleaver/Deinterleaver Pairs. In this case, d must be an integer multiple of
the number of shift registers, or else the convolutional deinterleaver cannot
recover the original symbols properly. If d is not naturally an integer multiple
of the number of shift registers, then you can adjust the delay manually by
padding the vector that forms the input to the deinterleaver.

Convolutional Interleaving and Deinterleaving Using a
Sequence of Consecutive Integers in MATLAB
The example below illustrates convolutional interleaving and deinterleaving
using a sequence of consecutive integers. It also illustrates the inherent delay
of the interleaver/deinterleaver pair.

x = [1:10]'; % Original data
delay = [0 1 2]; % Set delays of three shift registers.
[y,state_y] = muxintrlv(x,delay) % Interleave.
z = muxdeintrlv(y,delay) % Deinterleave.
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In this example, the muxintrlv function initializes the three shift registers
to the values [], [0], and [0 0], respectively. Then the function processes
the input data [1:10]', performing internal computations as indicated in
the table below.

Current Input Current Shift
Register

Current Output Contents of
Shift Registers

1 1 1
[]
[0]
[0 0]

2 2 0
[]
[2]
[0 0]

3 3 0
[]
[2]
[0 3]

4 1 4
[]
[2]
[0 3]

5 2 2
[]
[5]
[0 3]

6 3 0
[]
[5]
[3 6]

7 1 7
[]
[5]
[3 6]
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Current Input Current Shift
Register

Current Output Contents of
Shift Registers

8 2 5
[]
[8]
[3 6]

9 3 3
[]
[8]
[6 9]

10 1 10
[]
[8]
[6 9]

The output from the example is below.

y =

1
0
0
4
2
0
7
5
3

10

state_y =

value: {3x1 cell}
index: 2

z =
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0
0
0
0
0
0
1
2
3
4

Notice that the “Current Output” column of the table above agrees with the
values in the vector y. Also, the last row of the table above indicates that the
last shift register processed for the given data set is the first shift register.
This agrees with the value of 2 for state_y.index, which indicates that any
additional input data would be directed to the second shift register. You can
optionally check that the state values listed in state_y.value match the
“Contents of Shift Registers” entry in the last row of the table by typing
state_y.value{:} in the Command Window after executing the example.

Another feature to notice about the example output is that z contains
six zeros at the beginning before containing any of the symbols from the
original data set. The six zeros illustrate that the delay of this convolutional
interleaver/deinterleaver pair is length(delay)*max(delay) = 3*2 = 6.
For more information about delays, see “Delays of Convolutional Interleavers”
on page 3-176.

Convolutional Interleaving and Deinterleaving Using a
Sequence of Consecutive Integers in Simulink
The example below illustrates convolutional interleaving and deinterleaving
using a sequence of consecutive integers. It also illustrates the inherent delay
and the effect of the interleaving blocks’ initial conditions.
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To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Ramp, in the Simulink Sources library. Use default parameters.

• Zero-Order Hold, in the Simulink Discrete library. Use default parameters.

• Convolutional Interleaver

- Set Rows of shift registers to 3.

- Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver

- Set Rows of shift registers to 3.

- Set Initial conditions to [-1 -2 -3]'.

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to interleaved and restored, respectively, in the
two copies of this block.

- Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown in the preceding diagram. From the model
window’s Simulation menu, select Configuration parameters. In
the Configuration Parameters dialog box, set Stop time to 20. Run the
simulation and execute the following command:

comparison = [[0:20]', interleaved, restored]

comparison =

0 0 -1
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1 -2 -2
2 -3 -3
3 3 -1
4 -2 -2
5 -3 -3
6 6 -1
7 1 -2
8 -3 -3
9 9 -1

10 4 -2
11 -3 -3
12 12 0
13 7 1
14 2 2
15 15 3
16 10 4
17 5 5
18 18 6
19 13 7
20 8 8

In this output, the first column contains the original symbol sequence. The
second column contains the interleaved sequence, while the third column
contains the restored sequence.

The negative numbers in the interleaved and restored sequences come from
the interleaving blocks’ initial conditions, not from the original data. The first
of the original symbols appears in the restored sequence only after a delay
of 12 symbols. The delay of the interleaver-deinterleaver combination is the
product of the number of shift registers (3) and the maximum delay among
all shift registers (4).

For a similar example that also indicates the contents of the shift registers at
each step of the process, see “Convolutional Interleaving and Deinterleaving
Using a Sequence of Consecutive Integers in MATLAB” on page 3-181 in the
Communications System Toolbox documentation set.
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Digital Modulation
In most media for communication, only a fixed range of frequencies is
available for transmission. One way to communicate a message signal whose
frequency spectrum does not fall within that fixed frequency range, or one
that is otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation.

The sections of this chapter are as follows.

In this section...

“Digital Modulation Features” on page 3-188

“Signals and Delays” on page 3-195

“PM Modulation” on page 3-207

“AM Modulation” on page 3-208

“CPM Modulation” on page 3-213

“Using Modem Objects” on page 3-215

“Delays in Digital Modulation” on page 3-224

“Selected Bibliography for Digital Modulation” on page 3-226

Digital Modulation Features

• “Modulation Techniques” on page 3-188

• “Baseband and Passband Simulation” on page 3-193

• “Modulation Terminology” on page 3-194

• “Representing Digital Signals” on page 3-194

Modulation Techniques
The figure below shows the modulation techniques that Communications
System Toolbox supports for digital data. All the methods at the far right
are implemented in library blocks.
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Like analog modulation, digital modulation alters a transmittable signal
according to the information in a message signal. However, in this case,
the message signal is restricted to a finite set. Using this product, you can
modulate or demodulate signals using various digital modulation techniques.
You can also plot signal constellations. Modulation functions output the
complex envelope of the modulated signal.

Note The modulation and demodulation functions do not perform pulse
shaping or filtering. See “Filtering” on page 3-236 or “Combine Pulse Shaping
and Filtering with Modulation” on page 3-212 for more information about
filtering.

The available methods of modulation depend on whether the input signal is
analog or digital. The tables below show the modulation techniques that
Communications System Toolbox software supports for analog and digital
signals, respectively.
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Analog Modulation
Method

Acronym Function or Method

Amplitude modulation
(suppressed or
transmitted carrier)

AM ammod, amdemod

Frequency modulation FM fmmod, fmdemod

Phase modulation PM pmmod, pmdemod

Single sideband
amplitude modulation

SSB ssbmod, ssbdemod

Digital Modulation
Method

Acronym Function or Method

Differential phase shift
keying modulation

DPSK modulate method on
modem.dpskmod object,
demodulate method
on modem.dpskdemod
object

Frequency shift keying
modulation

FSK fskmod, fskdemod

General Quadrature
amplitude modulation

General QAM modulate method
on modem.genqammod
object, demodulate
method on
modem.genqamdemod
object

Minimum shift keying
modulation

MSK modulate method on
modem.mskmod object,
demodulate method on
modem.mskdemod object

Offset quadrature
phase shift keying
modulation

OQPSK modulate method on
modem.oqpskmod object,
demodulate method
on modem.oqpskdemod
object
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Digital Modulation
Method

Acronym Function or Method

Phase shift keying
modulation

PSK modulate method on
modem.pskmod object,
demodulate method on
modem.pskdemod object

Pulse amplitude
modulation

PAM modulate method on
modem.pammod object,
demodulate method on
modem.pamdemod object

Quadrature amplitude
modulation

QAM modulate method on
modem.qammod object,
demodulate method on
modem.qamdemod object

Accessing Digital Modulation Blocks. Open the Modulation library by
double-clicking the icon in the main block library. Then open the Digital
Baseband sublibrary by double-clicking its icon in the Modulation library.

The Digital Baseband library has sublibraries of its own. Open each of these
sublibraries by double-clicking the icon listed in the table below.

Kind of Modulation Icon in Digital Baseband Library

Amplitude modulation AM

Phase modulation PM

Frequency modulation FM

Continuous phase modulation CPM

Trellis-coded modulation TCM

Some digital modulation sublibraries contain blocks that implement special
cases of a more general technique and are, in fact, special cases of a more
general block. These special-case blocks use the same computational code that
their general counterparts use, but provide an interface that is either simpler
or more suitable for the special case. The following table lists special-case
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modulators, their general counterparts, and the conditions under which the
two are equivalent. The situation is analogous for demodulators.

General and Specific Blocks

General
Modulator

Specific Modulator Specific Conditions

General QAM
Modulator
Baseband

Rectangular QAM
Modulator Baseband

Predefined constellation
containing 2K points on a
rectangular lattice

BPSK Modulator
Baseband

M-ary number
parameter is 2.

M-PSK Modulator
Baseband

QPSK Modulator
Baseband

M-ary number
parameter is 4.

DBPSK Modulator
Baseband

M-ary number
parameter is 2.

M-DPSK
Modulator
Baseband DQPSK Modulator

Baseband
M-ary number
parameter is 4.

GMSK Modulator
Baseband

M-ary number
parameter is 2,
Frequency pulse shape
parameter is Gaussian.

MSK Modulator Baseband M-ary number
parameter is 2,
Frequency pulse
shape parameter is
Rectangular, Pulse
length parameter is 1.

CPM Modulator
Baseband

CPFSK Modulator
Baseband

Frequency pulse
shape parameter is
Rectangular, Pulse
length parameter is 1.
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General and Specific Blocks (Continued)

General
Modulator

Specific Modulator Specific Conditions

Rectangular QAM TCM
Encoder

Predefined signal
constellation containing
2K points on a rectangular
lattice

General TCM
Encoder

M-PSK TCM Encoder Predefined signal
constellation containing
2K points on a circle

Furthermore, the CPFSK Modulator Baseband block is similar to the
M-FSK Modulator Baseband block, when the M-FSK block uses continuous
phase transitions. However, the M-FSK features of this product differ
from the CPFSK features in their mask interfaces and in the demodulator
implementations.

Baseband and Passband Simulation
For a given modulation technique, two ways to simulate modulation
techniques are called baseband and passband. Baseband simulation, also
known as the lowpass equivalent method, requires less computation. This
product supports baseband simulation for digital modulation and passband
simulation for analog modulation.

Baseband Modulated Signals Defined. If you use baseband modulation
to produce the complex envelope y of the modulation of a message signal x,
then y is a complex-valued signal that is related to the output of a passband
modulator. If the modulated signal has the waveform

Y t f t Y t f tc c1 22 2( )cos( ) ( )sin( )π θ π θ+ − +

where fc is the carrier frequency and θ is the carrier signal’s initial phase,
then a baseband simulation recognizes that this equals the real part of
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[( ( ) ( )) ]exp( )Y t jY t e j f tj
c1 2 2+ θ π

and models only the part inside the square brackets. Here j is the square root
of -1. The complex vector y is a sampling of the complex signal

( ( ) ( ))Y t jY t e j
1 2+ θ

If you prefer to work with passband signals instead of baseband signals,
then you can build functions that convert between the two. Be aware that
passband modulation tends to be more computationally intensive than
baseband modulation because the carrier signal typically needs to be sampled
at a high rate.

Modulation Terminology
Modulation is a process by which a carrier signal is altered according to
information in a message signal. The carrier frequency, denoted Fc, is the
frequency of the carrier signal. The sampling rate is the rate at which the
message signal is sampled during the simulation.

The frequency of the carrier signal is usually much greater than the highest
frequency of the input message signal. The Nyquist sampling theorem
requires that the simulation sampling rate Fs be greater than two times the
sum of the carrier frequency and the highest frequency of the modulated
signal in order for the demodulator to recover the message correctly.

Representing Digital Signals
To modulate a signal using digital modulation with an alphabet having M
symbols, start with a real message signal whose values are integers from 0 to
M-1. Represent the signal by listing its values in a vector, x. Alternatively,
you can use a matrix to represent a multichannel signal, where each column
of the matrix represents one channel.

For example, if the modulation uses an alphabet with eight symbols, then
the vector [2 3 7 1 0 5 5 2 6]' is a valid single-channel input to the
modulator. As a multichannel example, the two-column matrix

[2 3;
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3 3;
7 3;
0 3;]

defines a two-channel signal in which the second channel has a constant
value of 3.

Signals and Delays
All digital modulation blocks process only discrete-time signals and use the
baseband representation. The data types of inputs and outputs are depicted
in the following figure.
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Note If you want to separate the in-phase and quadrature components of
the complex modulated signal, use the Complex to Real-Imag block in the
Simulink Math Operations library.

Integer-Valued Signals and Binary-Valued Signals
Some digital modulation blocks can accept either integer-valued or
binary–valued signals. The corresponding demodulation blocks can output
either integers or groups of individual bits that represent integers. This
section describes how modulation blocks process integer or binary inputs; the
case for demodulation blocks is the reverse. You should note that modulation
blocks have an Input type parameter and that demodulation blocks have
an Output type parameter.

When you set the Input type parameter to Integer, the block accepts integer
values between 0 andM-1. M represents theM-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts
binary-valued inputs that represent integers. The block collects binary-valued
signals into groups of K = log2(M) bits
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where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration,
the block accepts a group of K bits and maps that group onto a symbol at the
block output. The block outputs one modulated symbol for each group of K
bits.
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Constellation Ordering (or Symbol Set Ordering)
Depending on the modulation scheme, the Constellation ordering or
Symbol set ordering parameter indicates how the block maps a group of K
input bits to a corresponding symbol. When you set the parameter to Binary,
the block maps [u(1) u(2) ... u(K)] to the integer

u i K i

i

K

( )2
1

−

=
∑

and assumes that this integer is the input value. u(1) is the most significant
bit.

If you set M = 8, Constellation ordering (or Symbol set ordering) to
Binary, and the binary input word is [1 1 0], the block converts [1 1 0] to the
integer 6. The block produces the same output when the input is 6 and the
Input type parameter is Integer.

When you set Constellation ordering (or Symbol set ordering) to Gray,
the block uses a Gray-coded arrangement and assigns binary inputs to
points of a predefined Gray-coded signal constellation. The predefined M-ary
Gray-coded signal constellation assigns the binary representation

M = 8; P = [0:M-1]';
de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The following tables show the typical Binary to Gary mapping for M = 8.

Binary to Gray Mapping for Bits

Binary Code Gray Code

000 000

001 001

010 011

011 010
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Binary to Gray Mapping for Bits (Continued)

Binary Code Gray Code

100 110

101 111

110 101

111 100

Gray to Binary Mapping for Integers

Binary Code Gray Code

0 0

1 1

2 3

3 2

4 6

5 7

6 5

7 4

Gray Encoding a Modulated Signal. For the PSK, DPSK, FSK, QAM, and
PAM modulation types, Gray constellations are obtained by selecting the
Gray parameter in the corresponding modulation function or method.

For modulation objects, you can set the symbol order property to Gray to
obtain Gray-encoded modulation.

The following example demonstrates use of the symbol order property. The
Scatter plot shows the modulated symbols are Gray-encoded.

% Create 8-PSK Gray encoded modulator
hMod = modem.pskmod('M',8,'SymbolOrder','Gray');
% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

3-198



Digital Modulation

'Constellation',hMod.Constellation);
% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = 'rd';
% Add symbol labels
hold on;
k=log2(hMod.M);
for jj=1:hMod.M

text(real(hMod.Constellation(jj))-0.15,imag(hMod.Constellation(jj
dec2base(hMod.SymbolMapping(jj),2,k));

end
hold off;
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For modulation functions, set the symbol order argument to Gray.

Looking at the map above, notice that this is indeed a Gray-encoded map; all
adjacent elements differ by only one bit.

3-200



Digital Modulation

Delays From Digital Modulation
Digital modulation and demodulation blocks sometimes incur delays between
their inputs and outputs, depending on their configuration and on properties
of their signals. The following table lists sources of delay and the situations
in which they occur.

Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation
Type

Situation in Which Delay Occurs Amount of
Delay

FM demodulator Sample-based processing One output
period

Multirate processing, and the
model uses a variable-step solver
or a fixed-step solver with the
Tasking Mode parameter set to
SingleTasking
D = Traceback length parameter

D+1 output
periods

All demodulators
in CPM sublibrary

Single-rate processing,
D = Traceback depth parameter

D output
periods

Single-rate processing One output
period

Multirate processing, and the
model uses a fixed-step solver with
Tasking Mode parameter set to
Auto or MultiTasking.

Two output
periods

OQPSK
demodulator

Multirate processing processing, and
the model uses a variable-step solver
or the Tasking Mode parameter is
set to SingleTasking.

One output
period

All decoders in
TCM sublibrary

Operation mode set to Continuous,
Tr = Traceback depth parameter,
and code rate k/n

Tr*k output bits
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As a result of delays, data that enters a modulation or demodulation block
at time T appears in the output at time T+delay. In particular, if your
simulation computes error statistics or compares transmitted with received
data, it must take the delay into account when performing such computations
or comparisons.

First Output Sample in DPSK Demodulation. In addition to the delays
mentioned above, the M-DPSK, DQPSK, and DBPSK demodulators produce
output whose first sample is unrelated to the input. This is related to the
differential modulation technique, not the particular implementation of it.

Delays from Demodulation . Demodulation in the model below causes
the demodulated signal to lag, compared to the unmodulated signal. When
computing error statistics, the model accounts for the delay by setting the
Error Rate Calculation block’s Receive delay parameter to 0. If the Receive
delay parameter had a different value, then the error rate showing at the top
of the Display block would be close to 1/2.

To open this model , type doc_oqpsk_modulation_delay at the MATLAB
command line. To build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 4.

- Set Initial seed to any positive integer scalar.

• OQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

• AWGN Channel, in the Channels library

- Set Es/No to 6.
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• OQPSK Demodulator Baseband, in the PM sublibrary of the Digital
Baseband sublibrary of Modulation

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 1.

- Set Computation delay to 0.

- Set Output data to Port.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for
three entries.

Connect the blocks as shown above. From the model window’s Simulation,
select Configuration parameters. In the Configuration Parameters dialog
box, set Stop time to 1000. Then run the model and observe the error rate
at the top of the Display block’s icon. Your error rate will vary depending on
your Initial seed value in the Random Integer Generator block.

Upsample Signals and Rate Changes
Some digital modulation blocks can output an upsampled version of the
modulated signal, while their corresponding digital demodulation blocks can
accept an upsampled version of the modulated signal as input. In both cases,
the Rate options parameter represents the upsampling factor, which must
be a positive integer. Depending on whether the input signal is single-rate
mode or multirate mode, the block either changes the signal’s vector size or
its sample time, as the following table indicates. Only the OQPSK blocks
deviate from the information in the table, in that S is replaced by 2S in the
scaling factors.
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Process Upsampled Modulated Data (Except OQPSK Method)

Computation Type Input Status Result

Modulation Single-rate processing Output vector length
is S times the number
of integers or binary
words in the input
vector. Output sample
time equals the input
sample time.

Modulation Multirate processing Output vector is a
scalar. Output sample
time is 1/S times the
input sample time.

Demodulation Single-rate processing Number of integers or
binary words in the
output vector is 1/S
times the number of
samples in the input
vector. Output sample
time equals the input
sample time.

Demodulation Multirate processing Output signal contains
one integer or one
binary word. Output
sample time is S times
the input sample time.
Furthermore, if S > 1
and the demodulator
is from the AM, PM,
or FM sublibrary, the
demodulated signal is
delayed by one output
sample period. There
is no delay if S = 1 or if
the demodulator is from
the CPM sublibrary.
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Illustrations of Size or Rate Changes. The following schematics illustrate
how a modulator (other than OQPSK) upsamples a triplet of frame-based and
sample-based integers. In both cases, the Samples per symbol parameter
is 2.

Upsample Output: Single-Rate Processing

Upsample Output: Multirate Processing

Scalar input and output

Column vector input and output

The following schematics illustrate how a demodulator (other than OQPSK or
one from the CPM sublibrary) processes three doubly sampled symbols using
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both frame-based and sample-based inputs. In both cases, the Samples per
symbol parameter is 2. The sample-based schematic includes an output
delay of one sample period.

Upsampled Input: Single Rate Processing

Column vectors

Upsampled Input: Multirate Processing
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PM Modulation

DQPSK Signal Constellation Points and Transitions
The model below plots the output of the DQPSK Modulator Baseband block.
The image shows the possible transitions from each symbol in the DQPSK
signal constellation to the next symbol.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 4.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Set Sample time to .01.

• DQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

• Complex to Real-Imag, in the Simulink Math Operations library

• XY Graph, in the Simulink Sinks library

Use the blocks’ default parameters unless otherwise instructed. Connect the
blocks as in the figure above. Running the model produces the following plot.
The plot reflects the transitions among the eight DQPSK constellation points.
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This plot illustrates π/4-DQPSK modulation, because the default Phase
offset parameter in the DQPSK Modulator Baseband block is pi/4. To see
how the phase offset influences the signal constellation, change the Phase
offset parameter in the DQPSK Modulator Baseband block to pi/8 or another
value. Run the model again and observe how the plot changes.

AM Modulation

Rectangular QAM Modulation and Scatter Diagram
The model below uses the M-QAM Modulator Baseband block to modulate
random data. After passing the symbols through a noisy channel, the model
produces a scatter diagram of the noisy data. The diagram suggests what the
underlying signal constellation looks like and shows that the noise distorts
the modulated signal from the constellation.
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To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 16.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Set Sample time to .1.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Peak Power.

• AWGN Channel, in the Channels library

- Set Es/No to 20.

- Set Symbol period to .1.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Set Points displayed to 160.

- Set New points per display to 80.

- On the Figure Properties panel, set Scope position to
figposition([2.5 55 35 35]);.

- On the same panel, set Figure name to QAM Scatter Plot.

Connect the blocks as in the figure. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to 250. Running the model produces a scatter
diagram like the following one. Your plot might look somewhat different,
depending on your Initial seed value in the Random Integer Generator block.
Because the modulation technique is 16-QAM, the plot shows 16 clusters of
points. If there were no noise, the plot would show the 16 exact constellation
points instead of clusters around the constellation points.
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Compute the Symbol Error Rate
The example generates a random digital signal, modulates it, and adds noise.
Then it creates a scatter plot, demodulates the noisy signal, and computes
the symbol error rate. For a more elaborate example that is similar to this
one, see .

% Create a random digital message
M = 16; % Alphabet size
x = randi([0 M-1],5000,1); % Random symbols

% Use 16-QAM modulation.
hMod = modem.qammod(M);
hDemod = modem.qamdemod(hMod);

% Create a scatter plot and show constellation
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',hMod.Constellation);
scatterPlot.PlotSettings.Constellation = 'on';

% Modulate
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y = modulate(hMod,x);

% Transmit signal through an AWGN channel.
ynoisy = awgn(y,15,'measured');

% Create scatter plot from noisy data.
update(scatterPlot,ynoisy);

% Demodulate ynoisy to recover the message.
z=demodulate(hDemod,ynoisy);

% Check symbol error rate.
[num,rt] = symerr(x,z)

The output and scatter plot follow. Your numerical results and plot might
vary, because the example uses random numbers.

num =

83

rt =

0.0166

3-211



3 System Design

The scatter plot does not look exactly like a signal constellation. Where
the signal constellation has 16 precisely located points, the noise causes
the scatter plot to have a small cluster of points approximately where each
constellation point would be.

Combine Pulse Shaping and Filtering with Modulation
Modulation is often followed by pulse shaping, and demodulation is often
preceded by a filtering or an integrate-and-dump operation. This section
presents an example involving rectangular pulse shaping. For an example
that uses raised cosine pulse shaping, see “Pulse Shaping Using a Raised
Cosine Filter” on page 3-238.

Rectangular Pulse Shaping. Rectangular pulse shaping repeats each
output from the modulator a fixed number of times to create an upsampled
signal. Rectangular pulse shaping can be a first step or an exploratory step in
algorithm development, though it is less realistic than other kinds of pulse
shaping. If the transmitter upsamples the modulated signal, then the receiver
should downsample the received signal before demodulating. The “integrate
and dump” operation is one way to downsample the received signal.

The code below uses the rectpulse function for rectangular pulse shaping at
the transmitter and the intdump function for downsampling at the receiver.
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M = 16; % Alphabet size
x = randi([0 M-1],5000,1); % Message signal
Nsamp = 4; % Oversampling rate

% Use 16-QAM modulation.
hMod = modem.qammod(M);
hDemod = modem.qamdemod(hMod);

% Modulate
y = modulate(hMod,x);

% Follow with rectangular pulse shaping.
ypulse = rectpulse(y,Nsamp);

% Transmit signal through an AWGN channel.
ynoisy = awgn(ypulse,15,'measured');

% Downsample at the receiver.
ydownsamp = intdump(ynoisy,Nsamp);

% Demodulate to recover the message.
z = demodulate(hDemod,ydownsamp);

CPM Modulation

Phase Tree for Continuous Phase Modulation
This example plots a phase tree associated with a continuous phase
modulation scheme. A phase tree is a diagram that superimposes many
curves, each of which plots the phase of a modulated signal over time. The
distinct curves result from different inputs to the modulator.

This example uses the CPM Modulator Baseband block for its numerical
computations. The block is configured so that it uses a raised cosine filter
pulse shape. The example also illustrates how you can use Simulink and
MATLAB together. The example uses MATLAB commands to run a series
of simulations with different input signals, to collect the simulation results,
and to plot the full data set.
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Note In contrast to this example’s approach using both MATLAB and
Simulink, the commcpmphasetree demo produces a phase tree using a
Simulink model without additional lines of MATLAB code.

The first step of this example is to build the model. To open the completed
model, click here in the MATLAB Help browser. To build the model, gather
and configure these blocks:

• Constant, in the Simulink Commonly Used Blocks library

- Set Constant value to s (which will appear in the MATLAB workspace).

- Set Sampling mode to Frame-based.

- Set Frame period to 1.

• CPM Modulator Baseband

- Set M-ary number to 2.

- Set Modulation index to 2/3.

- Set Frequency pulse shape to Raised Cosine.

- Set Pulse length to 2.

• To Workspace, in the Simulink Sinks library

- Set Variable name to x.

- Set Save format to Array.

Do not run the model, because the variable s is not yet defined in the
MATLAB workspace. Instead, save the model to a folder on your MATLAB
path, using the filename doc_phasetree.

3-214



Digital Modulation

The second step of this example is to execute these commands in MATLAB:

The resulting plot follows. Each curve represents a different instance of
simulating the CPM Modulator Baseband block with a distinct (constant)
input signal.

Using Modem Objects

• “Section Overview” on page 3-216

• “Constructing a Modem Object” on page 3-216

• “Managing Object Properties” on page 3-216

• “Copying a Modem Object” on page 3-217

• “Displaying a Modem Object” on page 3-217

• “Resetting a Modem Object” on page 3-218

• “Modulating a Signal” on page 3-220

• “Demodulating a Signal” on page 3-220
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• “Example of Basic Modulation and Demodulation” on page 3-221

• “Exact LLR Algorithm” on page 3-222

• “Approximate LLR Algorithm” on page 3-223

Section Overview
Signal modulation generally requires the use of functions, such as fskmod or
ssbmod. For DPSK, General QAM, MSK, OQPSK, PAM, PSK, and QAM,
however, you modulate signals through the use of modem objects. This section
gives an overview of how you use these objects.

A modem object is a type of MATLAB variable that contains information
about the modulation algorithm, such as the name of the modulation class,
M-ary number, and the constellation mapping. The object can be operated
upon using specific methods to perform certain tasks.

Constructing a Modem Object
To construct modulator and demodulator objects, use the functions
(constructors) shown in the following table.

Modulation Type Constructors

DPSK modem.dpskmod and modem.dpskdemod

General QAM modem.genqammod and modem.genqamdemod

MSK modem.mskmod and modem.mskdemod

OQPSK modem.oqpskmod and modem.oqpskdemod

PAM modem.pammod and modem.pamdemod

PSK modem.pskmod and modem.pskdemod

QAM modem.qammod and modem.qamdemod

See individual reference pages for details.

Managing Object Properties
To view the properties of a modem object, use its disp method, as shown in
the following example:
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h=modem.pskmod; % Construct a PSK modulator object.
h.disp % Display object properties.

You can directly assign a value to a property as follows:

h=modem.pskmod(8); % Construct a PSK modulator object.
% Set the 'symbolorder' property of the object to 'gray'.
h.symbolorder='gray';

The properties can also be set to specific values when constructing the object.
See reference pages of individual objects for details.

Copying a Modem Object
The syntax h = copy(refobj) creates a new instance of an object, h, of the
same type as refobj, and copies the properties of refobj into h.

Setting another variable equal to an object just copies its handle, and is not
creating an independent copy of it. Thus, in the previous example, if you
set a = h, then a points to the same object h and any changes made to h
are also reflected in a.

Displaying a Modem Object
The syntax disp(h) displays relevant properties of object h.

If a property is not relevant to the object’s configuration, it does not display.
For example, for a MODEM.PSKDEMOD object, NoiseVariance property
is not relevant when DecisionType property is set to ’Hard decision’, hence
NoiseVariance property does not display.

The following is an example of using disp:

h = modem.pskmod; % create an object with default properties
disp(h); % display object properties

The output for this example looks like:

Type: 'PSK Modulator'
M: 2

PhaseOffset: 0
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Constellation: [1 -1+i*1.22464679914735e-16]
SymbolOrder: 'Binary'
SymbolMapping: [0 1]
InputType: 'Integer'

The following is an example of using disp:

h = modem.qamdemod('M', 32) % note the absence of semicolon

The output for this example looks like:

Type: 'QAM Demodulator'
M: 32

PhaseOffset: 0
Constellation: [1x32 double]

SymbolOrder: 'Binary'
SymbolMapping: [1x32 double]

OutputType: 'Integer'
DecisionType: 'Hard decision'

Resetting a Modem Object
The MSK, OQPSK, and DPSK modem objects (i.e., only those with memory)
have a reset method that resets the internal states of the object.

It assumes that the number of channels of the input signal to the modulate or
demodulate methods are one (i.e., the input is a column vector).

reset(h,nchan) resets the internal states of the object, h, assuming nchan
number of channels, where the input to the modulator is a matrix of nchan
columns. If the modulate or demodulate method is called with an input with
number of channels different from nchan, the object automatically resets itself
with the correct number of channels.

The following is an example of using reset:

h = modem.mskmod; % create an object with default properties
x = randint(100, 1, 2); % generate input bits
y = modulate(h, x); % modulate x
x = randint(100, 1, 2); % generate new input bits
reset(h); % reset the modulator
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y = modulate(h, x); % modulate x with the same initial state
% as the first call
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Modulating a Signal
The basic procedure for modulating a signal with DPSK, MSK, OQPSK, PAM,
PSK, QAM, or general QAM involves these steps:

1 Construct a modulator object as shown in “Constructing a Modem Object”
on page 3-216, depending on your modulation type.

2 Adjust properties of the modulator object, if necessary, to tailor it to your
needs. For example, you can change the phase offset or symbol order.

3 Modulate your signal by applying the modulate method of the modulator
object, as described in the following section.

Modem Modulation Method. Modulator objects have a method modulate
that is used to modulate signals.

The syntax is y = modulate(h, x), where h is the handle to a modulator
object and x is a signal. This syntax outputs the baseband signal y.

x can be a multichannel signal. The columns of x are considered individual
channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most
significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive
elements in each channel or column represent a symbol, where nBits =
log2(h.M). The number of elements in each channel must be an integer
multiple of nBits, and elements of x must be 0 or 1. For an input x of size

R C× , an output y of size ( / )R nBits C× is computed.

For h.inputtype = `integer' (i.e., x represents symbol input), elements of

x must be in the range [0, h.M-1]. For an input x of size R C× , an output

y of size R C× is computed.

Demodulating a Signal
The basic procedure for demodulating a signal with DPSK, MSK, OQPSK,
PAM, PSK, QAM, or general QAM involves these steps:
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1 Construct a demodulator object as shown in “Constructing a Modem Object”
on page 3-216, depending on your modulation type.

2 Adjust properties of the demodulator object, if necessary, to tailor it to your
needs. For example, you can change the phase offset or symbol order.

3 Demodulate your signal by applying the demodulate method of the
demodulator object, as described in the following section.

Modem Demodulation Method. Demodulator objects have a method
demodulate that is used to demodulate signals.

The syntax is y = demodulate(h, x), where h is the handle to a demodulator
object and x is a signal. This syntax processes the binary words (bits) or
symbols (integers) in signal x with the PSK or QAM demodulator object and
output the baseband signal y.

x can be a multichannel signal. The columns of x are considered individual
channels, while the rows are time steps.

The demodulator object’s property DecisionType should be set depending
on whether you want hard or soft (LLR or approximate LLR) decisions. To
allow for soft decisions, the demodulator object’s property OutputType must
be set to 'bit'.

For h.outputtype = `bit', an output y of size R nBits C× ×( ) is computed
for an input x of size R C× , where nBits = log2(h.M).

For h.outputtype = `integer', an output y of size R C× is computed for an

input x of size R C× .

Example of Basic Modulation and Demodulation
This code briefly illustrates the steps in modulation and demodulation.

x = randint(10,1,8); % Create a signal source.
h = modem.qammod(8) % Create a modulator object

% and display its properties.
y = modulate(h,x); % Modulate the signal x.
g = modem.qamdemod(h) % Create a demodulator object
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% from a modem.qammod object
% and display its properties.

z = demodulate(g,y); % Demodulate the signal y.

Exact LLR Algorithm
The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities
of a 0 bit being transmitted versus a 1 bit being transmitted for a received
signal. The LLR for a bit b is defined as:

L b
b r x y
b r x y
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Assuming equal probability for all symbols, the LLR for an AWGN channel
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where the variables represent the values shown in the following table.

Variable What the Variable Represents

r
Received signal with coordinates (x, y).

b
Transmitted bit (one of the K bits in an M-ary symbol,
assuming all M symbols are equally probable.

S0

Ideal symbols or constellation points with bit 0, at the
given bit position.

S1

Ideal symbols or constellation points with bit 1, at the
given bit position.
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Variable What the Variable Represents

sx

In-phase coordinate of ideal symbol or constellation point.

sy

Quadrature coordinate of ideal symbol or constellation
point.

σ2

Noise variance of baseband signal.

σx
2

Noise variance along in-phase axis.

σy
2

Noise variance along quadrature axis.

Note Noise components along the in-phase and quadrature axes are assumed

to be independent and of equal power (i.e., σ σ σx y
2 2 2 2= = ).

Approximate LLR Algorithm
Approximate LLR is computed by taking into consideration only the nearest
constellation point to the received signal with a 0 (or 1) at that bit position,
rather than all the constellation points as done in exact LLR. It is defined
as [8]:

L b x s y s x s y s
s S x y s S x y( ) min ( ) ( ) min ( ) ( )= − − + −( ) − − + −
∈ ∈

1
2

2 2 2 2

0 1σ
  (( )( )
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Delays in Digital Modulation
Digital modulation and demodulation blocks sometimes incur delays between
their inputs and outputs, depending on their configuration and on properties
of their signals. The following table lists sources of delay and the situations
in which they occur.

Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation
Type

Situation in Which Delay Occurs Amount of
Delay

FM demodulator Sample-based processing One output
period

Multirate processing, and the
model uses a variable-step solver
or a fixed-step solver with the
Tasking Mode parameter set to
SingleTasking
D = Traceback length parameter

D+1 output
periods

All demodulators
in CPM sublibrary

Single-rate processing,
D = Traceback depth parameter

D output
periods

Single-rate processing One output
period

Multirate processing, and the
model uses a fixed-step solver with
Tasking Mode parameter set to
Auto or MultiTasking.

Two output
periods

OQPSK
demodulator

Multirate processing processing, and
the model uses a variable-step solver
or the Tasking Mode parameter is
set to SingleTasking.

One output
period

All decoders in
TCM sublibrary

Operation mode set to Continuous,
Tr = Traceback depth parameter,
and code rate k/n

Tr*k output bits
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As a result of delays, data that enters a modulation or demodulation block
at time T appears in the output at time T+delay. In particular, if your
simulation computes error statistics or compares transmitted with received
data, it must take the delay into account when performing such computations
or comparisons.

First Output Sample in DPSK Demodulation
In addition to the delays mentioned above, the M-DPSK, DQPSK, and DBPSK
demodulators produce output whose first sample is unrelated to the input.
This is related to the differential modulation technique, not the particular
implementation of it.

Example: Delays from Demodulation
Demodulation in the model below causes the demodulated signal to lag,
compared to the unmodulated signal. When computing error statistics, the
model accounts for the delay by setting the Error Rate Calculation block’s
Receive delay parameter to 0. If the Receive delay parameter had a
different value, then the error rate showing at the top of the Display block
would be close to 1/2.

To open this model , type doc_oqpsk_modulation_delay at the MATLAB
command line. To build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 4.

- Set Initial seed to any positive integer scalar.

• OQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation
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• AWGN Channel, in the Channels library

- Set Es/No to 6.

• OQPSK Demodulator Baseband, in the PM sublibrary of the Digital
Baseband sublibrary of Modulation

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 1.

- Set Computation delay to 0.

- Set Output data to Port.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for
three entries.

Connect the blocks as shown above. From the model window’s Simulation,
select Configuration parameters. In the Configuration Parameters dialog
box, set Stop time to 1000. Then run the model and observe the error rate
at the top of the Display block’s icon. Your error rate will vary depending on
your Initial seed value in the Random Integer Generator block.
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Analog Passband Modulation

In this section...

“Analog Modulation Features” on page 3-228

“Represent Signals for Analog Modulation” on page 3-229

“Sampling Issues in Analog Modulation” on page 3-231

“Filter Design Issues” on page 3-231

Analog Modulation

Analog Modulation Features
In most communication medium, only a fixed range of frequencies is available
for transmission. One way to communicate a message signal whose frequency
spectrum does not fall within that fixed frequency range, or one that is
otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation. This
section describes how to modulate and demodulate analog signals using
blocks.

Open the Modulation library by double-clicking its icon in the main
Communications System Toolbox block library. Then, open the Analog
Passband sublibrary by double-clicking its icon in the Modulation library.

The following figure shows the modulation techniques that Communications
System Toolbox supports for analog signals. As the figure suggests, some
categories of techniques include named special cases.
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For a given modulation technique, two ways to simulate modulation
techniques are called baseband and passband. This product supports
passband simulation for analog modulation.

The modulation and demodulation blocks also let you control such features as
the initial phase of the modulated signal and post-demodulation filtering.

Represent Signals for Analog Modulation
Analog modulation blocks in this product process only sample-based scalar
signals. The input and output of the analog modulator and demodulator are
all real signals.

All analog demodulators in this product produce discrete-time, not
continuous-time, output.

Representing Analog Signals Using MATLAB
To modulate an analog signal using MATLAB, start with a real message
signal and a sampling rate Fs in hertz. Represent the signal using a vector
x, the entries of which give the signal’s values in time increments of 1/Fs.
Alternatively, you can use a matrix to represent a multichannel signal, where
each column of the matrix represents one channel.

For example, if t measures time in seconds, then the vector x below is the
result of sampling a sine wave 8000 times per second for 0.1 seconds. The
vector y represents the modulated signal.

3-229



3 System Design

Fs = 8000; % Sampling rate is 8000 samples per second.
Fc = 300; % Carrier frequency in Hz
t = [0:.1*Fs]'/Fs; % Sampling times for .1 second
x = sin(20*pi*t); % Representation of the signal
y = ammod(x,Fc,Fs); % Modulate x to produce y.
figure;
subplot(2,1,1); plot(t,x); % Plot x on top.
subplot(2,1,2); plot(t,y)% Plot y below.

As a multichannel example, the code below defines a two-channel signal in
which one channel is a sinusoid with zero initial phase and the second channel
is a sinusoid with an initial phase of pi/8.

Fs = 8000;
t = [0:.1*Fs]'/Fs;
x = [sin(20*pi*t), sin(20*pi*t+pi/8)];

Analog Modulation with Additive White Gaussian Noise
(AWGN) Using MATLAB
This example illustrates the basic format of the analog modulation and
demodulation functions. Although the example uses phase modulation, most
elements of this example apply to other analog modulation techniques as well.
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The example samples an analog signal and modulates it. Then it simulates an
additive white Gaussian noise (AWGN) channel, demodulates the received
signal, and plots the original and demodulated signals.

% Prepare to sample a signal for two seconds,
% at a rate of 100 samples per second.
Fs = 100; % Sampling rate
t = [0:2*Fs+1]'/Fs; % Time points for sampling

% Create the signal, a sum of sinusoids.
x = sin(2*pi*t) + sin(4*pi*t);

Fc = 10; % Carrier frequency in modulation
phasedev = pi/2; % Phase deviation for phase modulation

y = pmmod(x,Fc,Fs,phasedev); % Modulate.
y = awgn(y,10,'measured',103); % Add noise.
z = pmdemod(y,Fc,Fs,phasedev); % Demodulate.

% Plot the original and recovered signals.
figure; plot(t,x,'k-',t,z,'g-');
legend('Original signal','Recovered signal');

Other examples using analog modulation functions appear in the reference
pages for ammod, amdemod, ssbdemod, and fmmod.

Sampling Issues in Analog Modulation
The proper simulation of analog modulation requires that the Nyquist
criterion be satisfied, taking into account the signal bandwidth.

Specifically, the sample rate of the system must be greater than twice the sum
of the carrier frequency and the signal bandwidth.

Filter Design Issues
After demodulating, you might want to filter out the carrier signal. The
particular filter used, such as butter, cheby1, cheby2, and ellip, can be
selected on the mask of the demodulator block. Different filtering methods
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have different properties, and you might need to test your application with
several filters before deciding which is most suitable.

Varying Filter’s Cutoff Frequency Using Simulink
In many situations, a suitable cutoff frequency is half the carrier frequency.
Since the carrier frequency must be higher than the bandwidth of the message
signal, a cutoff frequency chosen in this way properly filters out unwanted
frequency components. If the cutoff frequency is too high, those components
may not be filtered out. If the cutoff frequency is too low, it might narrow
the bandwidth of the message signal.

The following example modulates a sawtooth message signal, demodulates
the resulting signal using a Butterworth filter, and plots the original and
recovered signals. The Butterworth filter is implemented within the SSB AM
Demodulator Passband block.

To build the model, gather and configure these blocks:

• Signal Generator, in the Simulink Sources library

- Set Wave form to Sawtooth.

- Set Amplitude to 4.

- Set Frequency to .3.

• Zero-Order Hold, in the Simulink Discrete library

- Set Sample time to .01.

• SSB AM Modulator Passband, in the Analog Passband sublibrary of the
Modulation library

- Set Carrier frequency to 25.
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- Set Initial phase to 0.

- Set Sideband to modulate to Upper.

- Set Hilbert transform filter order to 200.

• SSB AM Demodulator Passband, in the Analog Passband sublibrary of
the Modulation library

- Set Carrier frequency to 25.

- Set Initial phase to 0.

- Set Lowpass filter design method to Butterworth.

- Set Filter order to 2.

- Set Cutoff frequency to 30.

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as in the figure. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to 10. Running the model produces the following
scope image. The image reflects the original and recovered signals, with a
moderate filter cutoff.
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There is invariably a delay between a demodulated signal and the original
received signal. Both the filter order and the filter parameters directly affect
the length of this delay.

Other Filter Cutoffs. To see the effect of a lowpass filter with a higher cutoff
frequency, set the Cutoff frequency of the SSB AM Demodulator Passband
block to 49, and run the simulation again. The new result is shown below.
The higher cutoff frequency allows the carrier signal to interfere with the
demodulated signal.
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To see the effect of a lowpass filter with a lower cutoff frequency, set the
Cutoff frequency of the SSB AM Demodulator Passband block to 4, and run
the simulation again. The new result is shown in the following figure. The
lower cutoff frequency narrows the bandwidth of the demodulated signal.
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Filtering
Communications System Toolbox software includes several functions that can
help you design and use filters. Other filtering capabilities are in Signal
Processing Toolbox software. The sections of this chapter are as follows.

In this section...

“Filter Features” on page 3-236

“Pulse Shaping Using a Raised Cosine Filter” on page 3-238

“Group Delay” on page 3-242

“Design Hilbert Transform Filters” on page 3-245

“Filter with Raised Cosine Filters in MATLAB” on page 3-247

“Design Raised Cosine Filters Using MATLAB” on page 3-253

“Filter with Raised Cosine Filter Blocks Using Simulink” on page 3-255

“Design Raised Cosine Filters in Simulink” on page 3-256

“Selected Bibliography Filtering” on page 3-258

For a demonstration involving raised cosine filters, type showdemo rcosdemo.

Filter Features
Without propagation delays, both Hilbert filters and raised cosine filters are
noncausal. This means that the current output depends on the system’s
future input. In order to design only realizable filters, the hilbiir, rcosine,
and rcosflt functions delay the input signal before producing an output.
This delay, known as the filter’s group delay, is the time between the filter’s
initial response and its peak response. The group delay is defined as

− d
dω

θ ω( )

where θ is the phase of the filter and ω is the frequency in radians. This
delay is set so that the impulse response before time zero is negligible and
can safely be ignored by the function.
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For example, the Hilbert filter whose impulse is shown below uses a group
delay of one second. In the figure, the impulse response near time 0 is small
and the large impulse response values occur near time 1.

Filtering tasks that Communications System Toolbox supports using blocks
include

• Filtering using a raised cosine filter. Raised cosine filters are very
commonly used for pulse shaping and matched filtering. The schematic
below illustrates two typical uses of raised cosine filters.
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• Filtering using a Gaussian filter.

• Shaping a signal using ideal rectangular pulses.

• Implementing an integrate-and-dump operation or a windowed integrator.
An integrate-and-dump operation is often used in a receiver model
when the system’s transmitter uses an ideal rectangular-pulse model.
Integrate-and-dump can also be used in fiber optics and in spread-spectrum
communication systems such as CDMA (code division multiple access)
applications.

Other filtering capabilities are in DSP System Toolbox, in the Filter Designs
and Multirate Filters libraries.

For more background information about filters and pulse shaping, see the
works listed in the Selected Bibliography for Communications Filters.

Pulse Shaping Using a Raised Cosine Filter
This section further extends the example by addressing the following problem:

Problem Modify the Gray-coded modulation example so that it uses a pair
of square root raised cosine filters to perform pulse shaping and matched
filtering at the transmitter and receiver, respectively.

The solution uses the rcosine function to design the square root raised cosine
filter and the rcosflt function to filter the signals. Alternatively, you can
use the rcosflt function to perform both tasks in one command; see “Filter
with Raised Cosine Filters in MATLAB” on page 3-247 or the rcosdemo
demonstration for more details.

Solution of Problem
This solution modifies the code from commdoc_gray.m. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_gray
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To view a completed MATLAB file for this example, enter edit commdoc_rrc
in the MATLAB Command Window.

1. Define Filter-Related Parameters. In the Setup section of the example,
replace the definition of the oversampling rate, nsamp, with the following.

nsamp = 4; % Oversampling rate

Also, define other key parameters related to the filter by inserting the
following after the Modulation section of the example and before the
Transmitted signal section.

%% Filter Definition
% Define filter-related parameters.
filtorder = 40; % Filter order
delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rolloff = 0.25; % Rolloff factor of filter

2. Create a Square Root Raised Cosine Filter. To design the filter and
plot its impulse response, insert the following commands after the commands
you added in the previous step.

% Create a square root raised cosine filter.
rrcfilter = rcosine(1,nsamp,'fir/sqrt',rolloff,delay);

% Plot impulse response.
figure; impz(rrcfilter,1);
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3. Filter the Modulated Signal. To filter the modulated signal, replace the
Transmitted Signal section with following.

%% Transmitted Signal
% Upsample and apply square root raised cosine filter.
ytx = rcosflt(y,1,nsamp,'filter',rrcfilter);

% Create eye diagram for part of filtered signal.
eyediagram(ytx(1:2000),nsamp*2);

The rcosflt command internally upsamples the modulated signal, y, by a
factor of nsamp, pads the upsampled signal with zeros at the end to flush the
filter at the end of the filtering operation, and then applies the filter.

The eyediagram command creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note
that the signal shows significant intersymbol interference (ISI) because the
filter is a square root raised cosine filter, not a full raised cosine filter.
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To learn more about eyediagram, see “Eye Diagram Analysis” on page 6-15.

4. Filter the Received Signal. To filter the received signal, replace the
Received Signal section with the following.

%% Received Signal
% Filter received signal using square root raised cosine filter.
yrx = rcosflt(ynoisy,1,nsamp,'Fs/filter',rrcfilter);
yrx = downsample(yrx,nsamp); % Downsample.
yrx = yrx(2*delay+1:end-2*delay); % Account for delay.

These commands apply the same square root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of nsamp.

The last command removes the first 2*delay symbols and the last 2*delay
symbols in the downsampled signal because they represent the cumulative
delay of the two filtering operations. Now yrx, which is the input to the
demodulator, and y, which is the output from the modulator, have the same
vector size. In the part of the example that computes the bit error rate, it is
important to compare two vectors that have the same size.
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5. Adjust the Scatter Plot. For variety in this example, make the scatter
plot show the received signal before and after the filtering operation. To do
this, replace the Scatter Plot section of the example with the following.

%% Scatter Plot
% Create scatter plot of received signal before and
% after filtering.
h = scatterplot(sqrt(nsamp)*ynoisy(1:nsamp*5e3),nsamp,0,'g.');
hold on;
scatterplot(yrx(1:5e3),1,0,'kx',h);
title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');
axis([-5 5 -5 5]); % Set axis ranges.

Notice that the first scatterplot command scales ynoisy by sqrt(nsamp)
when plotting. This is because the filtering operation changes the signal’s
power.

Group Delay
The raised cosine and Gaussian filter blocks in this library implement
realizable filters by delaying the peak response. This delay, known as the
filter’s group delay, is the length of time between the filter’s initial response
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and its peak response. The filter blocks in this library have a Group delay
parameter that is an integer representing the number of symbol periods.

For example, the square root raised cosine filter whose impulse response
shown in the following figure uses a Group delay parameter of 4 in the
filter block. In the figure, the initial impulse response is small and the peak
impulse response occurs at the fourth symbol.

Implications of Delay for Simulations
A filter block’s Group delay parameter value has implications for other parts
of your model. For example, suppose you compare the symbol streams marked
Symbols In and Symbols Out in the schematics in “Filter Features” on page
3-236 by plotting or computing an error rate. Use one of these methods to
make sure you are comparing symbols that truly correspond to each other:

• Use the Delay block in DSP System Toolbox to delay the Symbols In signal,
thus aligning it with the Symbols Out signal. Set the Delay parameter
equal to the filter’s Group delay parameter (or the sum of both values,
if your model uses a pair of square root raised cosine filter blocks). This
usage is illustrated in the following figure for the case of a pair of square
root raised cosine filters.
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• Use the Align Signals block to align the two signals.

• When using the Error Rate Calculation block to compare the two signals,
increase the Receive delay parameter by the Group delay parameter
value (or the sum of both values, if your model uses a pair of square root
raised cosine filter blocks). The Receive delay parameter might include
other delays as well, depending on the contents of your model.

For more information about how to manage delays in a model, see Computing
Delays.

Compensate for Group Delays in Data Analysis Using MATLAB
Comparing filtered with unfiltered data might be easier if you delay the
unfiltered signal by the filter’s group delay. For example, suppose you use the
code below to filter x and produce y.

tx = 0:4; % Times for data samples
x = [0 1 1 1 1]'; % Binary data samples
% Filter the data and use a delay of 2 seconds.
delay = 2;
[y,ty] = rcosflt(x,1,8,'fir',.3,delay);

The elements of tx and ty represent the times of each sample of x and y,
respectively. However, y is delayed relative to x, so corresponding elements
of x and y do not have the same time values. Plotting y against ty and x
against tx is less useful than plotting y against ty and x against a delayed
version of tx.
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% Top plot
subplot(2,1,1), plot(tx,x,'*',ty,y);
legend('Data','Filtered data');
title('Data with No Added Delay');
% Bottom plot delays tx.
subplot(2,1,2), plot(tx+delay,x,'*',ty,y);
legend('Data','Filtered data');
title('Data with an Added Delay');

For another example of compensating for group delay, see the raised cosine
filter demo by typing showdemo rcosdemo.

Design Hilbert Transform Filters

• “Section Overview” on page 3-246

• “Example with Default Parameters” on page 3-246

3-245



3 System Design

Section Overview
The hilbiir function designs a Hilbert transform filter and produces either

• A plot of the filter’s impulse response

• A quantitative characterization of the filter, using either a transfer function
model or a state-space model

Example with Default Parameters
For example, typing

hilbiir

plots the impulse response of a fourth-order digital Hilbert transform filter
having a one-second group delay. The sample time is 2/7 seconds. In this
particular design, the tolerance index is 0.05. The plot also displays the
impulse response of the ideal Hilbert transform filter having a one-second
group delay. The plot is in the figure in “Group Delay” on page 3-242.

To compute this filter’s transfer function, use the command below.

[num,den] = hilbiir

num =

-0.3183 -0.3041 -0.5160 -1.8453 3.3105

den =

1.0000 -0.4459 -0.1012 -0.0479 -0.0372

The vectors num and den contain the coefficients of the numerator and
denominator, respectively, of the transfer function in ascending order of
powers of z-1.

The commands in this section use the function’s default parameters. You
can also control the filter design by specifying the sample time, group delay,
bandwidth, and tolerance index. The reference entry for hilbiir explains

3-246



Filtering

these parameters. The group delay is also mentioned in “Group Delay” on
page 3-242.

Filter with Raised Cosine Filters in MATLAB

• “Section Overview” on page 3-247

• “Sampling Rates” on page 3-247

• “Designing Filters Automatically” on page 3-248

• “Specifying Filters Using Input Arguments” on page 3-249

• “Controlling the Rolloff Factor” on page 3-250

• “Controlling the Group Delay” on page 3-250

• “Combining Two Square-Root Raised Cosine Filters” on page 3-252

Section Overview
The rcosflt function applies a raised cosine filter to data. Because rcosflt
is a versatile function, you can

• Use rcosflt to both design and implement the filter.

• Specify a raised cosine filter and use rcosflt only to filter the data.

• Design and implement either raised cosine filters or square-root raised
cosine filters.

• Specify the rolloff factor and/or group delay of the filter, if rcosflt designs
the filter.

• Design and implement either FIR or IIR filters.

This section discusses the use of sampling rates in filtering and then covers
these options. For an additional example, type showdemo rcosdemo in the
MATLAB Command Window.

Sampling Rates
The basic rcosflt syntax

y = rcosflt(x,Fd,Fs...) % Basic syntax
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assumes by default that you want to apply the filter to a digital signal x
whose sampling rate is Fd. The filter’s sampling rate is Fs. The ratio of Fs
to Fd must be an integer. By default, the function upsamples the input data
by a factor of Fs/Fd before filtering. It upsamples by inserting Fs/Fd-1 zeros
between consecutive input data samples. The upsampled data consists of
Fs/Fd samples per symbol and has a sampling rate of Fs.

An example using this syntax is below. The output sampling rate is four
times the input sampling rate.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.

Maintaining the Input Sampling Rate. You can also override the default
upsampling behavior. In this case, the function assumes that the input signal
already has a sampling rate of Fs and consists of Fs/Fd samples per symbol.
You might want to maintain the sampling rate in a receiver’s filter if the
corresponding transmitter’s filter has already upsampled sufficiently.

To maintain the sampling rate, modify the fourth input argument in rcosflt
to include the string Fs. For example, in the first command below, rcosflt
uses its default upsampling behavior and the output sampling rate is four
times the input sampling rate. By contrast, the second command below uses
Fs in the string argument and thus maintains the sampling rate throughout.

y1 = rcosflt([1;0;0],1,4,'fir'); % Upsample by factor of 4/1.
y2 = rcosflt([1;0;0],1,4,'fir/Fs'); % Maintain sampling rate.

The second command assumes that the sampling rate of the input signal is 4,
and that the input signal contains 4/1 samples per symbol.

An example that uses the 'Fs' option at the receiver is in “Combining Two
Square-Root Raised Cosine Filters” on page 3-252.

Designing Filters Automatically
The simplest syntax of rcosflt assumes that the function should both design
and implement the raised cosine filter. For example, the command below
designs an FIR raised cosine filter and then filters the input vector [1;0;0]
with it. The second and third input arguments indicate that the function
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should upsample the data by a factor of 8 (that is, 8/1) during the filtering
process.

y = rcosflt([1;0;0],1,8);

Types of Raised Cosine Filters. You can have rcosflt design other types
of raised cosine filters by using a fourth input argument. Variations on the
previous example are below.

y = rcosflt([1;0;0],1,8,'fir'); % Same as original example
y = rcosflt([1;0;0],1,8,'fir/sqrt'); % FIR square-root RC filter
y = rcosflt([1;0;0],1,8,'iir'); % IIR raised cosine filter
y = rcosflt([1;0;0],1,8,'iir/sqrt'); % IIR square-root RC filter

Specifying Filters Using Input Arguments
If you have a transfer function for a raised cosine filter, then you can provide
it as an input to rcosflt so that rcosflt does not design its own filter. This
is useful if you want to use rcosine to design the filter once and then use
the filter many times. For example, the rcosflt command below uses the
'filter' flag to indicate that the transfer function is an input argument. The
input num is a vector that represents the FIR transfer function by listing its
coefficients.

num = rcosine(1,8); y = rcosflt([1;0;0],1,8,'filter',num);

This syntax for rcosflt works whether num represents the transfer function
for a square-root raised cosine FIR filter or an ordinary raised cosine FIR
filter. For example, the code below uses a square-root raised cosine FIR filter.
Only the definition of num is different.

num = rcosine(1,8,'sqrt'); y = rcosflt([1;0;0],1,8,'filter',num);

You can also use a raised cosine IIR filter. To do this, modify the fourth input
argument of the rcosflt command above so that it contains the string 'iir'
and provide a denominator argument. An example is below.

delay = 8;
[num,den] = rcosine(1,8,'iir',.5,delay);
y = rcosflt([1;0;0],1,8,'iir/filter',num,den,delay);
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Controlling the Rolloff Factor
If rcosflt designs the filter automatically, then you can control the rolloff
factor of the filter, as described below. If you specify your own filter, then
rcosflt does not need to know its rolloff factor.

The rolloff factor determines the excess bandwidth of the filter. For example,
a rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the
input sampling frequency, Fd. This also means that the transition band of the
filter extends from .5 * Fd to 1.5 * Fd.

The default rolloff factor is .5, but if you want to use a value of .2, then you
can use a command such as the one below. Typical values for the rolloff factor
are between .2 and .5.

y = rcosflt([1;0;0],1,8,'fir',.2); % Rolloff factor is .2.

Controlling the Group Delay
If rcosflt designs the filter automatically, then you can control the group
delay of the filter, as described below. If you specify your own FIR filter, then
rcosflt does not need to know its group delay.

The filter’s group delay is the time between the filter’s initial response and its
peak response. The default group delay in the implementation is three input
samples. To specify a different value, measure it in input symbol periods and
provide it as the sixth input argument. For example, the command below
specifies a group delay of six input samples, which is equivalent to 6 *8 /1
output samples.

y = rcosflt([1;0;0],1,8,'fir',.2,6); % Delay is 6 input samples.

The group delay influences the size of the output, as well as the order of the
filter if rcosflt designs the filter automatically. See the reference page for
rcosflt for details that relate to the syntax you want to use.
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Example: Raised Cosine Filter Delays. The code below filters a signal
using two different group delays. A larger delay results in a smaller
error in the frequency response of the filter. The plot shows how the two
filtered signals differ, and the output pt indicates that the first peak occurs
at different times for the two filtered signals. In the plot, the solid line
corresponds to a delay of six samples, while the dashed line corresponds to a
delay of eight samples.

[y,t] = rcosflt(ones(10,1),1,8,'fir',.5,6); % Delay = 6 samples
[y1,t1] = rcosflt(ones(10,1),1,8,'fir',.5,8); % Delay = 8 samples
plot(t,y,t1,y1,'--') % Two curves indicate the different delays.
legend('Delay = 6 samples','Delay = 8 samples','Location','NorthOutside')
peak = t(find(y == max(y))); % Times where first curve peaks
peak1 = t1(find(y1 == max(y1))); % Times where second curve peaks
pt = [min(peak), min(peak1)] % First peak time for both curves

The output is below.

pt =

14.6250 16.6250

If Fs/Fd is at least 4, then a group delay value of at least 8 works well in many
cases. In the examples of this section, Fs/Fd is 8.
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Delays of Six Samples (Solid Line) and Eight Samples (Dashed Line)

Combining Two Square-Root Raised Cosine Filters
If you want to split the filtering equally between the transmitter’s filter and
the receiver’s filter, then you can use a pair of square-root raised cosine
filters. In theory, the combination of two square-root raised cosine filters
is equivalent to a single normal raised cosine filter. However, the limited
impulse response of practical square-root raised cosine filters causes a slight
difference between the response of two successive square-root raised cosine
filters and the response of one raised cosine filter.

Using rcosine and rcosflt to Implement Square-Root Raised Cosine
Filters. One way to implement the pair of square-root raised cosine filters is
to follow these steps:

1 Use rcosine with the 'sqrt' flag to design a square-root raised cosine
filter.

2 Use rcosflt in the transmitter section of code to upsample and filter the
data.

3 Use rcosflt in the receiver section of code to filter the received data
without upsampling it. Use the 'Fs' flag to avoid upsampling.
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An example of this approach is below. The syntaxes for rcosflt use the
'filter' flag to indicate that you are providing the filter’s transfer function
as an input.

% First approach
x = randint(100,1,2,1234); % Data
num = rcosine(1,8,'sqrt'); % Transfer function of filter
y1 = rcosflt(x,1,8,'filter',num); % Filter the data.
z1 = rcosflt(y1,1,8,'Fs/filter',num); % Filter the received data
% but do not upsample it.

Using rcosflt Alone. Another way to implement the pair of square-root
raised cosine filters is to have rcosflt both design and use the square-root
raised cosine filter. This approach avoids using rcosine. The corresponding
example code is below. The syntaxes for rcosflt use the 'sqrt' flag to
indicate that you want it to design a square-root raised cosine filter.

% Second approach
x = randint(100,1,2,1234); % Data (again)
y2 = rcosflt(x,1,8,'sqrt'); % Design and use a filter.
z2 = rcosflt(y2,1,8,'sqrt/Fs'); % Design and use a filter
% but do not upsample the data.

Because these two approaches are equivalent, y1 is the same as y2 and z1 is
the same as z2.

Design Raised Cosine Filters Using MATLAB

• “Section Overview” on page 3-253

• “Sampling Rates” on page 3-254

• “Example Designing a Square-Root Raised Cosine Filter” on page 3-254

• “Other Options in Filter Design” on page 3-254

Section Overview
The rcosine function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter
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• Infinite impulse response (IIR) raised cosine filter

• FIR square-root raised cosine filter

• IIR square-root raised cosine filter

The function returns the transfer function as output. To learn about applying
raised cosine filters, see “Filter with Raised Cosine Filters in MATLAB” on
page 3-247.

Sampling Rates
The rcosine function assumes that you want to apply the filter to a digital
signal whose sampling rate is Fd. The function also requires you to provide
the filter’s sampling rate, Fs. The ratio of Fs to Fd must be an integer.

Example Designing a Square-Root Raised Cosine Filter
For example, the command below designs a square-root raised cosine FIR
filter with a sampling rate of 2, for use with a digital signal whose sampling
rate is 1.

num = rcosine(1,2,'fir/sqrt')
num =

Columns 1 through 7

0.0021 -0.0106 0.0300 -0.0531 -0.0750 0.4092 0.8037

Columns 8 through 13

0.4092 -0.0750 -0.0531 0.0300 -0.0106 0.0021

Here, the vector num contains the coefficients of the filter, in ascending order
of powers of z-1.

Other Options in Filter Design
You can also control the filter design by specifying the rolloff factor, group
delay, and (for IIR filters) tolerance index explicitly, instead of having
rcosine use its default values. The reference page for rcosine explains
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these parameters. The group delay is also mentioned in “Group Delay” on
page 3-242.

Filter with Raised Cosine Filter Blocks Using Simulink
The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks
are designed for raised cosine filtering. Each block can apply a square root
raised cosine filter or a normal raised cosine filter to a signal. You can vary
the rolloff factor and group delay of the filter.

The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks
are tailored for use at the transmitter and receiver, respectively. In particular,
the transmit filter outputs an upsampled signal, while the receive filter
expects its input signal to be upsampled already. Also, the receive filter lets
you choose whether to have the block downsample the filtered signal before
sending it to the output port.

Both raised cosine filter blocks incur a propagation delay, described in “Group
Delay” on page 3-242.

Combining Two Square-Root Raised Cosine Filters
To split the filtering equally between the transmitter’s filter and the receiver’s
filter, use a pair of square root raised cosine filters:

• Use a Raised Cosine Transmit Filter block at the transmitter, setting the
Filter type parameter to Square root.

• Use a Raised Cosine Receive Filter block at the receiver, setting the Filter
type parameter to Square root. In most cases, it is appropriate to set
the Input samples per symbol parameter to match the transmit filter’s
Upsampling factor parameter.

In theory, the cascade of two square root raised cosine filters is equivalent to
a single normal raised cosine filter. However, the limited impulse response of
practical square root raised cosine filters causes a slight difference between
the response of two cascaded square root raised cosine filters and the response
of one raised cosine filter.
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Design Raised Cosine Filters in Simulink
This example illustrates a typical setup in which a transmitter uses a square
root raised cosine filter to perform pulse shaping and the corresponding
receiver uses a square root raised cosine filter as a matched filter. The
example plots an eye diagram from the filtered received signal.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 16.

- Set Sample time to 1/100.

- Select Frame-based outputs.

- Set Samples per frame to 100.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Peak Power.

- Set Peak power to 1.

• Raised Cosine Transmit Filter, in the Comm Filters library

- Set Group delay to 4.

• AWGN Channel, in the Channels library

- Set Mode to Signal to noise ratio (SNR).

- Set SNR to 40.
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- Set Input signal power to 0.0694. The power gain of square root

raised cosine transmit filter is
1
N
, where N represents the upsampling

factor of the filter. The input signal power of filter is 0.5556. Because
the Peak power of the 16-QAM Rectangular modulator is set to 1 Watt,
it translates to an average power of 0.5556. Therefore, the output signal

power of filter is
0 5556

8
0 0694

.
.= .

• Raised Cosine Receive Filter, in the Comm Filters library

- Set Group delay to 4.

- Set Rolloff factor to 0.5.

- Set Output mode to None.

• Discrete-Time Eye Diagram Scope, in the Comm Sinks library

- Set Symbols per trace to 2.

- Set Traces displayed to 100.

Connect the blocks as in the figure. Running the simulation produces the
following eye diagram. The eye diagram has two widely opened “eyes” that
indicate appropriate instants at which to sample the filtered signal before
demodulating. This illustrates the absence of intersymbol interference at the
sampling instants of the received waveform.
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The large signal-to-noise ratio in this example produces a low-noise eye
diagram, while the model still illustrates where the raised cosine filter blocks
typically belong in relation to a channel block. If you decrease the SNR
parameter in the AWGN Channel block, the eyes in the diagram are less open.
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Synchronization

In this section...

“Synchronization Features” on page 3-260

“Timing Phase Recovery” on page 3-260

“Carrier Phase Recovery” on page 3-271

“Selected Bibliography for Synchronization” on page 3-281

Synchronization Features
In order to interpret information correctly, a communication receiver must
be synchronized with the corresponding transmitter. This can be achieved in
both analog and digital domains. A digital receiver must sample the signal
at an appropriate instant within the symbol period, and must estimate the
carrier phase. Alternatively, analog components such as voltage-controlled
oscillators (VCOs) and phase-locked loops (PLLs) can enable a receiver to
adjust its behavior based on the parameters of the incoming signals or the
desired signals.

This product implements several algorithms for timing phase recovery and
carrier phase recovery. It also includes some lower-level components that you
can use to build your own PLLs. This section describes the capabilities of the
Synchronization library’s blocks, in these key sections:

Open the Synchronization library by double-clicking its icon in the main
Communications System Toolbox block library. Then open the sublibraries by
double-clicking their icons in the Synchronization library.

Timing Phase Recovery
The Timing Phase Recovery library contains blocks that implement various
algorithms for determining the best instant within a symbol period to sample
a signal at the receiver. For example, the best instant for a PSK-modulated
signal is at the peak of the pulse shape. Sampling at the best instant improves
the receiver’s performance on a noisy signal. Typically, you would place
a timing phase recovery block after a receive filter that is matched to the
transmitting pulse shape, and before a demodulator.
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This section about timing phase recovery covers these topics:

• “Supported Algorithms for Timing Phase Recovery” on page 3-261

• “Feedforward Method for Timing Phase Recovery” on page 3-261

• “Feedback Methods for Timing Phase Recovery” on page 3-262

• “Choosing a Method for Timing Phase Recovery” on page 3-264

• “Examples of Timing Phase Recovery” on page 3-267

Supported Algorithms for Timing Phase Recovery
This library supports the algorithms listed below, which are all digital
recovery methods rather than conventional analog phase-locked loops. For
more information about each algorithm, see the reference works cited on
each block’s reference entry.

Algorithm Block

Squaring method (feedforward) Squaring Timing Recovery

Early-late gate method (feedback) Early-Late Gate Timing Recovery

Gardner’s method (feedback) Gardner Timing Recovery

Fourth-order nonlinearity method
(feedback)

MSK-Type Signal Timing Recovery

Mueller-Muller method (feedback) Mueller-Muller Timing Recovery

Feedforward Method for Timing Phase Recovery
A feedforward method for timing phase recovery is structured as in the
following figure.
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In the figure,

• The input signal is typically the output of a receive filter that is matched to
the transmit pulse shape.

• The timing estimator gives an estimate of the input signal’s sampling
phase.

• The timing corrector is a sampler that outputs the value of the input signal
corresponding to the phase estimate. The timing corrector interpolates
between input signal values if necessary.

Squaring Timing Recovery block. The Squaring Timing Recovery block
implements a feedforward method for timing phase recovery. In this method,
the timing estimator uses a complex Fourier coefficient to determine the
spectral component of the squared input signal at frequency 1/T, where T is
the symbol period. For the specific equation, see the reference page for the
Squaring Timing Recovery block.

Feedback Methods for Timing Phase Recovery
The Timing Phase Recovery library implements several feedback methods
for timing phase recovery. A feedback method for timing phase recovery is
structured as in the following figure.
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In the figure,

• The input signal is typically the output of a receive filter that is matched to
the transmit pulse shape.

• The interpolator generates additional samples based on the needs of the
timing error detector. As implemented here, the interpolator uses linear
interpolation between pairs of points.

• The timing error detector generates a timing error signal for each symbol.
The algorithm used for timing error detection depends on the library block.

• The loop filter updates the phase estimate for the current symbol using
the timing error signal and the previous symbol’s phase estimate. The
phase estimate for the (k+1)st symbol is [[TAU]]k+1 = [[TAU]]k+g*e(k),
where g is the step size (also the Error update gain parameter in the
feedback-method blocks in this library) and e(k) is the timing error for
the kth symbol.

• The controller uses the phase estimates to determine the interpolating
instants that the interpolator uses in the next cycle.
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Restarting the Phase Estimating Process During the Simulation. When
using a feedback method for timing phase recovery in Simulink, you can
restart the phase-estimation process at different points during the simulation.
Restarting the process means resetting the data buffer and phase-estimate
buffer to the all-zeros state. The table below lists the supported options.

Value of Reset
Parameter

When Estimation Process Restarts

None At beginning of simulation only. During the
simulation, the block operates continuously,
retaining information from one symbol to the
next.

Every frame Regularly, at the start of each frame of data.
During the simulation, each frame of data is
processed independently. This option is valid
only with frame-based data.

On nonzero input via
port

Whenever the second input (Rst) is nonzero.
When the first input is sample-based, its symbol
period must equal the sample time of Rst.
When the first input is frame-based, its frame
period must equal the sample time of Rst, and
the reset occurs at the start of the frame.

Using the Restarting Options Effectively

If you restart the phase-estimation process during the simulation, be sure
to include enough symbols between successive resets for the algorithm to
converge to a stable value. Check the phase (Ph) output from the block to see
whether its values stabilize before the reset occurs. To include more symbols
between successive resets, either increase the frame size by buffering frames
together (when using the Every frame option) or change the Rst input so that
nonzero values occur less frequently.

Choosing a Method for Timing Phase Recovery
Depending on your system, one or more recovery methods implemented in
this library might be suitable. If you use a method that is not suitable for
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your system, the results might not be accurate. This section discusses the
assumptions and suitability of the various methods, covering these topics:

• “Squaring Timing Recovery Block” on page 3-265

• “Assumptions Common to All Feedback Method Blocks” on page 3-265

• “Early-Late Gate Timing Recovery Block” on page 3-266

• “Gardner Timing Recovery Block” on page 3-266

• “MSK-Type Signal Timing Recovery Block” on page 3-267

• “Mueller-Muller Timing Recovery Block” on page 3-267

Squaring Timing Recovery Block. The Squaring Timing Recovery block
recovers the symbol-timing phase of the input signal using a squaring
method. This frame-based, feedforward, nondata-aided method is similar to a
conventional squaring loop.

This block is suitable for systems that use linear baseband modulation
types such as pulse amplitude modulation (PAM), phase shift keying (PSK)
modulation, and quadrature amplitude modulation (QAM).

The block assumes that the phase offset is constant for all symbols in the
entire input frame. If necessary, you can use the Buffer block to reorganize
your data into frames over which the phase offset can be assumed constant.

Assumptions Common to All Feedback Method Blocks. The feedback
method, as implemented in this library, makes some assumptions about the
data it receives:

• The phase varies slowly over time. Although the blocks compute a phase
estimate for each symbol, the estimate should remain approximately
constant for several symbols or else the algorithm does not converge.

• The symbol frequency is constant and known. Small variations in phase
correspond to a frequency offset, but the blocks do not compensate for it.
The blocks estimate and correct only the phase, not the frequency.

Although the blocks that implement feedback methods share a common
structure and the common assumptions above, the blocks use different
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algorithms in the timing error detector and incur different delays. See each
block’s reference entry for details.

Early-Late Gate Timing Recovery Block. The Early-Late Gate Timing
Recovery block implements a nondata-aided feedback method.

This block is suitable for systems that use a linear modulation type, such as
pulse amplitude modulation (PAM), phase shift keying (PSK) modulation, or
quadrature amplitude modulation (QAM), with Nyquist pulses (for example,
using a raised cosine filter). In the presence of noise, the performance of this
timing recovery method improves as the pulse’s excess bandwidth (rolloff
factor in the case of a raised cosine filter) increases.

The early-late gate method is similar to Gardner’s method, which is
implemented in the Gardner Timing Recovery block. Some differences
between the two methods are as follows:

• In the ideal case (that is, when the phase estimate is zero and the input
signal has symmetric Nyquist pulses), the timing error detector for the
early-late gate method requires samples that span one symbol interval,
rather than two symbol intervals as in Gardner’s method.

• Compared to Gardner’s method, the early-late gate method has higher self
noise and thus does not perform as well as Gardner’s method in systems
with high SNR values.

Gardner Timing Recovery Block. The Gardner Timing Recovery block
implements a nondata-aided feedback method that is independent of carrier
phase recovery.

This block is suitable for both baseband systems and modulated carrier
systems. More specifically, this block is suitable for systems that use a linear
modulation type with Nyquist pulses that have an excess bandwidth between
approximately 40% and 100%. Examples of suitable systems are those that
use pulse amplitude modulation (PAM), phase shift keying (PSK) modulation,
or quadrature amplitude modulation (QAM), and that shape the signal using
raised cosine filters whose rolloff factor is between 0.4 and 1. In the presence
of noise, the performance of this timing recovery method improves as the
excess bandwidth (rolloff factor in the case of a raised cosine filter) increases.
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Gardner’s method is similar to the early-late gate method, which is
implemented in the Early-Late Gate Timing Recovery block.

MSK-Type Signal Timing Recovery Block. The MSK-Type Signal
Timing Recovery block recovers the symbol timing phase of the input signal
using a fourth-order nonlinearity method. This block implements a general
nondata-aided feedback method that is independent of carrier phase recovery
but that requires prior compensation for the carrier frequency offset.

This block is suitable for systems that use baseband minimum shift keying
(MSK) modulation or Gaussian minimum shift keying (GMSK) modulation.
Unlike the other blocks in this library, this block does not require the input
signal to have been filtered beforehand.

Mueller-Muller Timing Recovery Block. The Mueller-Muller Timing
Recovery block implements a decision-directed, data-aided feedback method
that requires prior recovery of the carrier phase.

This block is suitable for systems that use a binary linear modulation type,
such as binary phase shift keying (BPSK) modulation, or binary phase
amplitude modulation (BPAM). The binary requirement arises because
the algorithm uses a sign detector (that is, a 1-bit quantizer) to arrive at
decisions. When the input signal has Nyquist pulses (for example, using a
raised cosine filter), this timing recovery method has no self noise. In the
presence of noise, the performance of this timing recovery method improves
as the pulse’s excess bandwidth factor decreases, making the method a good
candidate for narrowband signaling.

Examples of Timing Phase Recovery
One way to illustrate the usage and behavior of the timing phase recovery
blocks is to introduce a fractional delay in a communications link and then
see how well the block estimates the delay value and samples the received
signal. In this context, a “fractional delay” is a delay that is not a multiple of
the signal’s symbol period. The examples discussed here are

• “Squaring Timing Phase Recovery Example” on page 3-268, described
below. This model introduces a fixed fractional delay and uses a
feedforward method for timing phase recovery.

3-267



3 System Design

• Gardner timing phase recovery demo, which you can open by entering
commgardnerphrecov in the MATLAB Command Window. This model
introduces a fractional delay that varies from frame to frame and uses a
feedback method for timing phase recovery.

Squaring Timing Phase Recovery Example
This example modifies the one in “Design Raised Cosine Filters in Simulink”
on page 3-256 by introducing and then correcting for a fixed fractional delay.
The model uses the Squaring Timing Recovery block to estimate that delay
and determine the best instant within the symbol to sample its input signal.
The model then demodulates the downsampled signal and computes a symbol
error rate.

To open the completed model, click here in the MATLAB Help browser.

To build the model, first open the raised cosine filter model by clicking here in
the MATLAB Help browser. Then, gather and configure these blocks:
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• Variable Fractional Delay, in the DSP System Toolbox Signal Operations
library. Use default parameters.

• Constant, in the Simulink Sources library

- Set Constant value to 2.66. This is the number of samples of delay
introduced in the system.

• Goto and From, in the Simulink Signal Routing library. Use default
parameters.

• Selector, in the Simulink Signal Routing library

- Set Elements to 1. This causes the block to select the first value in the
frame, all of whose entries are actually the same.

- Set Input port width to 100.

• Squaring Timing Recovery

- Set Samples per symbol to 8.

• Rectangular QAM Demodulator Baseband, in the AM sublibrary of the
Digital Baseband sublibrary of Modulation

- Set Normalization method to Peak Power.

- Set Peak power to 1.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 8. This accounts for the delay of the pair of square
root raised cosine filters.

- Set Output data to Port.

• Two copies of Display, in the Simulink Sinks library. Make one tall enough
to accommodate three values.

Connect the blocks as in the figure, and then run the simulation.
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Results of the Simulation. When you run the simulation, look for these
results:

• A delay estimate that varies during the simulation but is near the fixed
value of 2.66. The Squaring Timing Recovery block computes this delay
estimate for each frame and then uses it to choose a sampling instant for
the symbols in that frame.

• A symbol error rate that is small or zero, depending on how long you run
the simulation. For most or all symbols, the Squaring Timing Recovery
block determines a sampling instant that enables the demodulator to
recover data correctly.

• An eye diagram that has two widely opened “eyes” near 8.325 ms and
18.325 ms. These wide openings indicate appropriate instants at which to
sample the filtered signal before demodulating, and reflect the introduced
delay of 2.66 samples.

To arrive at the numbers 8.325 and 18.325, reason as follows: The eye
diagram displays two symbols per trace, and each symbol has a period of
10 ms. Without the introduced delay, the centers of the trace’s two symbols
are at 5 ms and 15 ms. The delay value in each symbol is

(2.66 samples) / (8 samples/symbol) * (10 ms/symbol) = 3.325 ms

Therefore, the traces from the delayed signal have their widest openings
at (5+3.325) ms and (15+3.325) ms.
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While this example uses a fixed delay throughout the simulation, the blocks
in the timing recovery library can also correct for delays that vary (slowly)
from symbol to symbol. For an example that uses a varying delay, see the
Gardner timing phase recovery demo.

Carrier Phase Recovery
The Carrier Phase Recovery library contains blocks that implement digital
algorithms for determining the carrier phase of a baseband digital signal. The
blocks assume that the carrier frequency is known and fixed. The blocks
output the estimated carrier phase as well as a corrected (that is, rotated)
version of the input signal. Typically, you place a carrier phase recovery block
before a demodulator, and after a timing phase recovery block or another
block that produces symbols rather than an upsampled signal.

This section about carrier phase recovery covers these topics:

• “Supported Algorithms for Carrier Phase Recovery” on page 3-272

• “Carrier Phase Recovery Example” on page 3-272
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Supported Algorithms for Carrier Phase Recovery
This library supports the algorithms listed below, which are all digital
recovery methods rather than conventional analog methods. For more
information about each algorithm, see the reference works cited on each
block’s reference entry.

Algorithm Block

2P-power method, suitable for full-response
CPM, MSK, CPFSK, or GMSK signals.

CPM Phase Recovery

M-power method, suitable for M-PSK signals.
(Also, the 4-power method is suitable for QAM
signals using any alphabet size.)

M-PSK Phase Recovery

The methods described in the table are nondata-aided, clock-aided,
feedforward methods. They assume that timing and carrier frequency are
already known and any matched filtering has already been performed.

The methods also assume that the carrier phase to be estimated is constant
over a series of consecutive symbols. When you use the blocks in this library,
you specify the number of symbols over which the carrier phase is assumed
constant.

Carrier Phase Recovery Example
This example modifies the one in “Squaring Timing Phase Recovery Example”
on page 3-268 by introducing and then correcting for a fixed phase offset. The
model uses the M-PSK Phase Recovery block to estimate the offset and correct
the received baseband signal by rotating it. The model then demodulates the
corrected signal and computes a symbol error rate.

To open the completed model, click here in the MATLAB Help browser.
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To build the model, first open the squaring timing phase recovery model by
clicking here in the MATLAB Help browser. Then, gather and configure
these blocks:

• M-PSK Modulator Baseband and M-PSK Demodulator Baseband, in the
PM sublibrary of the Digital Baseband sublibrary of Modulation. In each
block,

- Set M-ary number to 16.

- Set Phase offset to 0.

• Phase/Frequency Offset, in the RF Impairments library

- Set Phase offset to 10.

• M-PSK Phase Recovery

- Set M-ary number to 16.

- Set Observation interval to 500.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Set Points displayed to 400.
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• Display, in the Simulink Sinks library

Replace the Rectangular QAM Modulator Baseband and Rectangular QAM
Demodulator Baseband blocks with the corresponding M-PSK blocks listed
above.

Remove the Discrete-Time Eye Diagram Scope block and the branched signal
line leading to it.

In the Error Rate Calculation block, change Computation delay to 500,
because the M-PSK Phase Recovery block has a latency of one observation
interval. This latency is described on the M-PSK Phase Recovery block’s
reference page.

Connect the remaining blocks as in the figure, and then run the simulation.

Results of the Simulation. When you run the simulation, look for these
results:

• A carrier phase estimate that varies during the simulation but is near the
fixed value of 10 degrees. The M-PSK Phase Recovery block computes
this carrier phase estimate for each frame and then uses it to correct the
phase of the symbols in that frame.

• A symbol error rate that is small or zero, depending on how long you run
the simulation. For most or all symbols, the M-PSK Phase Recovery block
enables the demodulator to recover data correctly.
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• A signal constellation that reflects the signal whose phase the M-PSK
Phase Recovery block has corrected. When you first begin the simulation
and the block is in an initial latency period, the constellation reflects the
phase offset of 10 degrees, with no correction. After the latency period is
over, the constellation shows no phase offset because the M-PSK Phase
Recovery block has corrected for it. The constellations before and after
the end of the latency period appear below. The easiest way to see the
10-degree rotation between the two constellations is to look at the axes.

Before End of Latency Period
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After End of Latency Period

Exploring the Simulation Further. Another way to examine the
performance of the carrier phase recovery is to check how much the phase
estimates from successive observation intervals differ from each other. You
do this using the plotting capabilities of MATLAB along with the simulation
capabilities of Simulink:

1 Add a Signal to Workspace block, from the Signal Processing Sinks library,
to the carrier phase recovery example model.

2 In the Signal to Workspace block, set Variable name to phs and set Limit
data points to last to 200.

3 Connect the Signal to Workspace block to the Ph output of the M-PSK
Phase Recovery block, as shown in the following figure.
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4 In the MATLAB Command Window, enter this command to run the
simulation for a finite period of time:

sim('doc_carrier',205);

You make the simulation run faster by closing the window containing
the signal constellation plot. When the simulation ends, the MATLAB
workspace contains a variable called phs that contains the last 200 phase
estimates from the M-PSK Phase Recovery block. Initial zeros from the
delay period are omitted.

5 Create a plot showing the phase estimate values as well as their mean
value by entering the following in the MATLAB Command Window:

plot(1:200,phs,'b-',1:200,mean(phs),'r--')
legend('Carrier phase estimate','Mean carrier phase estimate')
xlabel('Observation intervals'); ylabel('Degrees')
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The plot shows that the mean is very close to the expected value of 10 degrees,
while the individual phase estimates vary within an interval that includes
10 degrees.

Components
The Components sublibrary contains voltage-controlled oscillator (VCO)
models as well as phase-locked loop (PLL) models.

This section discusses these topics:

• “Voltage-Controlled Oscillator Blocks” on page 3-279

• “Overview of PLL Simulation” on page 3-279

• “Implementing an Analog Baseband PLL” on page 3-280

• “Implementing a Digital PLL” on page 3-280

For details about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” on page 3-281.
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Voltage-Controlled Oscillator Blocks. A voltage-controlled oscillator is one
part of a phase-locked loop. The Continuous-Time VCO and Discrete-Time
VCO blocks implement voltage-controlled oscillators. These blocks produce
continuous-time and discrete-time output signals, respectively. Each block’s
output signal is sinusoidal, and changes its frequency in response to the
amplitude variations of the input signal.

Overview of PLL Simulation. A phase-locked loop (PLL), when used in
conjunction with other components, helps synchronize the receiver. A PLL is
an automatic control system that adjusts the phase of a local signal to match
the phase of the received signal. The PLL design works best for narrowband
signals.

A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled
oscillator (VCO). For example, the following figure shows how these
components are arranged for an analog passband PLL. In this case, the phase
detector is just a multiplier. The signal e(t) is often called the error signal.
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The following table indicates the supported types of PLLs and the blocks
that implement them.

Supported PLLs in Components Library

Type of PLL Block

Analog passband PLL Phase-Locked Loop

Analog baseband PLL Baseband PLL

Linearized analog baseband PLL Linearized Baseband PLL

Digital PLL using a charge pump Charge Pump PLL
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Different PLLs use different phase detectors, filters, and VCO characteristics.
Some of these attributes are built into the PLL blocks in this product, while
others depend on parameters that you set in the block mask:

• You specify the filter’s transfer function in the block mask using the
Lowpass filter numerator and Lowpass filter denominator
parameters. Each of these parameters is a vector that lists the coefficients
of the respective polynomial in order of descending exponents of the
variable s. To design a filter, you can use functions such as butter, cheby1,
and cheby2 in Signal Processing Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL
blocks use a VCO input sensitivity parameter. Some blocks also use
VCO quiescent frequency, VCO initial phase, and VCO output
amplitude parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot
change from the block mask.

Implementing an Analog Baseband PLL. Unlike passband models for a
phase-locked loop, a baseband model does not depend on a carrier frequency.
This allows you to use a lower sampling rate in the simulation. Two blocks
implement analog baseband PLLs:

• Baseband PLL

• Linearized Baseband PLL

The linearized model and the nonlinearized model differ in that the linearized
model uses the approximation

sin ( ) ( )Δ Δθ θt t( ) ≅

to simplify the computations. This approximation is close when Δθ(t) is near
zero. Thus, instead of using the input signal and the VCO output signal
directly, the linearized PLL model uses only their phases.

Implementing a Digital PLL. The charge pump PLL is a classical digital
PLL. Unlike the analog PLLs mentioned above, the charge pump PLL uses
a sequential logic phase detector, which is also known as a digital phase
detector or a phase/frequency detector.
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Equalization

In this section...

“Equalization Features” on page 3-282

“Equalize A Signal” on page 3-283

“Equalizer Structure” on page 3-284

“Adaptive Algorithms” on page 3-291

“MLSE Equalizers” on page 3-311

“Selected Bibliography for Equalizers” on page 3-320

Equalization Features
Time-dispersive channels can cause intersymbol interference (ISI), a form
of distortion that causes symbols to overlap and become indistinguishable
by the receiver. For example, in a multipath scattering environment, the
receiver sees delayed versions of a symbol transmission, which can interfere
with other symbol transmissions. An equalizer attempts to mitigate ISI and
improve receiver performance. Communications System Toolbox provides
equalization capabilities using one or more Simulink blocks, System objects,
or MATLAB functions.

This product supports the following distinct classes of equalizers, each of
which have a different overall structure:

• Linear equalizers, a class that is further divided into these categories:

- Symbol-spaced equalizers

- Fractionally spaced equalizers (FSEs)

• Decision-feedback equalizers (DFEs)

• MLSE (Maximum-Likelihood Sequence Estimation) equalizers that uses
the Viterbi algorithm. To learn how to use the MLSE equalizer capabilities,
see “MLSE Equalizers” on page 3-311.
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Linear and decision-feedback equalizers are adaptive equalizers that use an
adaptive algorithm when operating. For each of the adaptive equalizer classes
listed above, this toolbox supports these adaptive algorithms:

• Least mean square (LMS)

• Signed LMS, including these types: sign LMS, signed regressor LMS, and
sign-sign LMS

• Normalized LMS

• Variable-step-size LMS

• Recursive least squares (RLS)

• Constant modulus algorithm (CMA)

Several blocks from the Equalizers library implement adaptive equalizers,
differing in the equalizer structure and the type of adaptive algorithm that
they use. In all cases, you specify information about the equalizer structure
(such as the number of taps), the adaptive algorithm (such as the step size),
and the signal constellation used by the modulator in your model. You
also specify an initial set of weights for the taps of the equalizer; the block
adaptively updates the weights throughout the simulation. For adaptive
algorithms other than CMA, the equalizer can adapt the weights in two
modes: training mode and decision-directed mode.

To learn how to use the adaptive equalizer capabilities, start with “Adaptive
Algorithms” on page 3-291. For more detailed background material, see the
works listed in “Selected Bibliography for Equalizers” on page 3-320.

Equalize A Signal
Equalizing a signal using Communications System Toolbox software involves
these steps:

1 Create an equalizer object that describes the equalizer class and the
adaptive algorithm that you want to use. An equalizer object is a type of
MATLAB variable that contains information about the equalizer, such as
the name of the equalizer class, the name of the adaptive algorithm, and
the values of the weights.
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2 Adjust properties of the equalizer object, if necessary, to tailor it to your
needs. For example, you can change the number of weights or the values
of the weights.

3 Apply the equalizer object to the signal you want to equalize, using the
equalize method of the equalizer object.

Equalize a Signal Using MATLAB
This code briefly illustrates the steps in the basic procedure above.

% Build a set of test data.
x = pskmod(randint(1000,1),2); % BPSK symbols
rxsig = conv(x,[1 0.8 0.3]); % Received signal
% Create an equalizer object.
eqlms = lineareq(8,lms(0.03));
% Change the reference tap index in the equalizer.
eqlms.RefTap = 4;
% Apply the equalizer object to a signal.
y = equalize(eqlms,rxsig,x(1:200));

In this example, eqlms is an equalizer object that describes a linear LMS
equalizer having eight weights and a step size of 0.03. At first, the reference
tap index in the equalizer has a default value, but assigning a new value
to the property eqlms.RefTap changes this index. Finally, the equalize
command uses the eqlms object to equalize the signal rxsig using the
training sequence x(1:200).

Equalizer Structure

Decision-Feedback Equalizers
A decision-feedback equalizer is a nonlinear equalizer that contains a forward
filter and a feedback filter. The forward filter is similar to the linear equalizer
described in “Symbol-Spaced Equalizers” on page 3-285, while the feedback
filter contains a tapped delay line whose inputs are the decisions made on the
equalized signal. The purpose of a DFE is to cancel intersymbol interference
while minimizing noise enhancement. By contrast, noise enhancement is a
typical problem with the linear equalizers described earlier.
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The following schematic contains a fractionally spaced DFE with L forward
weights and N-L feedback weights. The forward filter is at the top and the
feedback filter is at the bottom. If K is 1, the result is a symbol-spaced DFE
instead of a fractionally spaced DFE.
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In each symbol period, the equalizer receives K input samples at the forward
filter, as well as one decision or training sample at the feedback filter. The
equalizer then outputs a weighted sum of the values in the forward and
feedback delay lines, and updates the weights to prepare for the next symbol
period.

Note The algorithm for the Weight Setting block in the schematic jointly
optimizes the forward and feedback weights. Joint optimization is especially
important for the RLS algorithm.

Symbol-Spaced Equalizers
A symbol-spaced linear equalizer consists of a tapped delay line that stores
samples from the input signal. Once per symbol period, the equalizer outputs
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a weighted sum of the values in the delay line and updates the weights
to prepare for the next symbol period. This class of equalizer is called
symbol-spaced because the sample rates of the input and output are equal.

Below is a schematic of a symbol-spaced linear equalizer with N weights,
where the symbol period is T.
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Updating the Set of Weights. The algorithms for the Weight Setting and
Error Calculation blocks in the schematic are determined by the adaptive
algorithm chosen from the list in “Equalization Features” on page 3-282. The
new set of weights depends on these quantities:

• The current set of weights

• The input signal

• The output signal

• For adaptive algorithms other than CMA, a reference signal, d, whose
characteristics depend on the operation mode of the equalizer

Reference Signal and Operation Modes. The table below briefly describes
the nature of the reference signal for each of the two operation modes.
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Operation Mode of
Equalizer

Reference Signal

Training mode Preset known transmitted sequence

Decision-directed mode Detected version of the output signal,
denoted by yd in the schematic

In typical applications, the equalizer begins in training mode to gather
information about the channel, and later switches to decision-directed mode.

Error Calculation. The error calculation operation produces a signal given by
the expression below, where R is a constant related to the signal constellation.

e
d y

y R y
=

−

−

  Algorithms other than CMA

  CMA              ( )2                          

⎧
⎨
⎪

⎩⎪

Fractionally Spaced Equalizers
A fractionally spaced equalizer is a linear equalizer that is similar to a
symbol-spaced linear equalizer, as described in “Symbol-Spaced Equalizers”
on page 3-285. By contrast, however, a fractionally spaced equalizer receives
K input samples before it produces one output sample and updates the
weights, where K is an integer. In many applications, K is 2. The output
sample rate is 1/T, while the input sample rate is K/T. The weight-updating
occurs at the output rate, which is the slower rate.

The following schematic illustrates a fractionally spaced equalizer.
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Implement LMS Linear Equalizer Using Simulink
This example illustrates the use of an LMS linear equalizer. The simulation
transmits a 16-QAM signal, modeling the channel using an FIR filter followed
by additive white Gaussian noise. The equalizer receives the signal from
the channel and, as training symbols, a subset of the modulator’s output.
The equalizer operates in training mode at the beginning of each frame and
switches to decision-directed mode when it runs out of training symbols. The
example contrasts the signals before and after equalization to illustrate the
effect of the equalizer.

To open this model, type doc_lmseq at the MATLAB command line.
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To build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 16.

- Set Sample time to 1/1000.

- Select Frame-based outputs.

- Set Samples per frame to 1000.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Average Power.

- Set Average power to 1.

• Digital Filter, in the DSP System Toolbox Filter Designs sublibrary of
Filtering

- Set Transfer function type to FIR (all zeros).

- Set Filter structure to Direct form transposed.

- Set Numerator coefficients to [1 -.3 .1 .2j].

• Submatrix, in the DSP System Toolbox Indexing sublibrary of Signal
Management

- Set Ending row to Index.

- Set Ending row index to 100.
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• AWGN Channel, in the Channels library

- Set Mode to Signal to noise ratio (SNR).

- Set SNR to 40.

• LMS Linear Equalizer

- Set Number of taps to 6.

- Clear the Mode input port, Output error, and Output weights
check boxes.

• Two copies of Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Set Points displayed to 400 in each of the two copies.

Connect the blocks as in the figure. Running the simulation produces two
scatter plots that display the signal before and after equalization, respectively.

Scatter Plots in the Example. Throughout the simulation, the signal before
equalization deviates noticeably from a 16-QAM signal constellation, as below.

Early in the simulation, the equalizer does not appear to improve the scatter
plot. In fact, the equalizer is busy trying to adapt its weights appropriately.
The following figure shows the equalized signal very early in the simulation.
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After some simulation time passes, the equalizer’s weights work well on the
received signal. As a result, the equalized signal looks far more like a 16-QAM
signal constellation than the received signal does. The figure below shows the
equalized signal in its steady state.

Adaptive Algorithms

• “Adaptive Equalizer Functions” on page 3-292
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• “Specify an Adaptive Algorithm” on page 3-292

• “Specify an Adaptive Equalizer” on page 3-294

• “Using Adaptive Equalizers” on page 3-298

This section provides an overview of the process you typically use in
the MATLAB environment to take advantage of the adaptive equalizer
capabilities. The MLSE equalizer has a different interface, described in
“MLSE Equalizers” on page 3-311.

Adaptive Equalizer Functions
Keeping the basic procedure in mind, read other portions of this chapter to
learn more details about

• How to create objects that represent different classes of adaptive equalizers
and different adaptive algorithms

• How to adjust properties of an adaptive equalizer or properties of an
adaptive algorithm

• How to equalize signals using an adaptive equalizer object

Specify an Adaptive Algorithm

• “Choose an Adaptive Algorithm” on page 3-292

• “Indicating a Choice of Adaptive Algorithm” on page 3-293

• “Access Properties of an Adaptive Algorithm” on page 3-294

Choose an Adaptive Algorithm. Configuring an equalizer involves
choosing an adaptive algorithm and indicating your choice when creating an
equalizer object in the MATLAB environment.

Although the best choice of adaptive algorithm might depend on your
individual situation, here are some generalizations that might influence
your choice:

• The LMS algorithm executes quickly but converges slowly, and its
complexity grows linearly with the number of weights.
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• The RLS algorithm converges quickly, but its complexity grows with the
square of the number of weights, roughly speaking. This algorithm can also
be unstable when the number of weights is large.

• The various types of signed LMS algorithms simplify hardware
implementation.

• The normalized LMS and variable-step-size LMS algorithms are more
robust to variability of the input signal’s statistics (such as power).

• The constant modulus algorithm is useful when no training signal is
available, and works best for constant modulus modulations such as PSK.

However, if CMA has no additional side information, it can introduce phase
ambiguity. For example, CMA might find weights that produce a perfect
QPSK constellation but might introduce a phase rotation of 90, 180, or
270 degrees. Alternatively, differential modulation can be used to avoid
phase ambiguity.

Details about the adaptive algorithms are in the references listed in “Selected
Bibliography for Equalizers” on page 3-320.

Indicating a Choice of Adaptive Algorithm. After you have chosen the
adaptive algorithm you want to use, indicate your choice when creating
the equalizer object mentioned in “Equalize A Signal” on page 3-283. The
functions listed in the table below provide a way to indicate your choice
of adaptive algorithm.

Adaptive Algorithm Function Type of Adaptive Algorithm

lms Least mean square (LMS)

signlms Signed LMS, signed regressor LMS,
sign-sign LMS

normlms Normalized LMS

varlms Variable-step-size LMS

rls Recursive least squares (RLS)

cma Constant modulus algorithm (CMA)

Two typical ways to use a function from the table are as follows:
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• Use the function in an inline expression when creating the equalizer object.

For example, the code below uses the lms function inline when creating
an equalizer object.

eqlms = lineareq(10,lms(0.003));

• Use the function to create a variable in the MATLAB workspace and then
use that variable when creating the equalizer object. The variable is called
an adaptive algorithm object.

For example, the code below creates an adaptive algorithm object named
alg that represents the adaptive algorithm, and then uses alg when
creating an equalizer object.

alg = lms(0.003);
eqlms = lineareq(10,alg);

Note To create an adaptive algorithm object by duplicating an existing one
and then changing its properties, see the important note in Duplicating and
Copying Objects on page 295 about the use of copy versus the = operator.

In practice, the two ways are equivalent when your goal is to create an
equalizer object or to equalize a signal.

Access Properties of an Adaptive Algorithm. The adaptive algorithm
functions not only provide a way to indicate your choice of adaptive algorithm,
but they also let you specify certain properties of the algorithm. For
information about what each property of an adaptive algorithm object means,
see the reference pages for the lms, signlms, normlms, varlms, rls, or cma
functions.

To view or change any properties of an adaptive algorithm, use the syntax
described for channel objects in “Display Object Properties” on page 4-13 and
“Change Object Properties” on page 4-15.

Specify an Adaptive Equalizer

• “Defining an Equalizer Object” on page 3-295
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• “Accessing Properties of an Equalizer” on page 3-296

Defining an Equalizer Object. To create an equalizer object, use one of the
functions listed in the table below.

Function Type of Equalizer

lineareq Linear equalizer (symbol-spaced or
fractionally spaced)

dfe Decision-feedback equalizer

For example, the code below creates three equalizer objects: one representing
a symbol-spaced linear RLS equalizer having 10 weights, one representing a
fractionally spaced linear RLS equalizer having 10 weights and two samples
per symbol, and one representing a decision-feedback RLS equalizer having
three weights in the feedforward filter and two weights in the feedback filter.

% Create equalizer objects of different types.
eqlin = lineareq(10,rls(0.3)); % Symbol-spaced linear
eqfrac = lineareq(10,rls(0.3),[-1 1],2); % Fractionally spaced linear
eqdfe = dfe(3,2,rls(0.3)); % DFE

Although the lineareq and dfe functions have different syntaxes, they both
require an input argument that represents an adaptive algorithm. To learn
how to represent an adaptive algorithm or how to vary properties of the
adaptive algorithm, see “Specify an Adaptive Algorithm” on page 3-292.

Each of the equalizer objects created above is a valid input argument for the
equalize function. To learn how to use the equalize function to equalize a
signal, see “Using Adaptive Equalizers” on page 3-298.

Duplicating and Copying Objects

Another way to create an object is to duplicate an existing object and then
adjust the properties of the new object, if necessary. If you do this, it is
important that you use a copy command such as

c2 = copy(c1); % Copy c1 to create an independent c2.
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instead of c2 = c1. The copy command creates a copy of c1 that is
independent of c1. By contrast, the command c2 = c1 creates c2 as merely a
reference to c1, so that c1 and c2 always have indistinguishable content.

Accessing Properties of an Equalizer. An equalizer object has numerous
properties that record information about the equalizer. Properties can be
related to

• The structure of the equalizer (for example, the number of weights).

• The adaptive algorithm that the equalizer uses (for example, the step
size in the LMS algorithm). When you create the equalizer object using
lineareq or dfe, the function copies certain properties from the algorithm
object to the equalizer object. However, the equalizer object does not retain
a connection to the algorithm object.

• Information about the equalizer’s current state (for example, the values
of the weights). The equalize function automatically updates these
properties when it operates on a signal.

• Instructions for operating on a signal (for example, whether the equalizer
should reset itself before starting the equalization process).

For information about what each equalizer property means, see the reference
page for the lineareq or dfe function.

To view or change any properties of an equalizer object, use the syntax
described for channel objects in “Display Object Properties” on page 4-13 and
“Change Object Properties” on page 4-15.

Linked Properties of an Equalizer Object

Some properties of an equalizer object are related to each other such that
when one property’s value changes, another property’s value must adjust, or
else the equalizer object fails to describe a valid equalizer. For example, in
a linear equalizer, the nWeights property is the number of weights, while
the Weights property is the value of the weights. If you change the value of
nWeights, the value of Weights must adjust so that its vector length is the
new value of nWeights.
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To find out which properties are related and how MATLAB compensates
automatically when you make certain changes in property values, see the
reference page for lineareq or dfe.

The example below illustrates that when you change the value of nWeights,
MATLAB automatically changes the values of Weights and WeightInputs to
make their vector lengths consistent with the new value of nWeights. Because
the example uses the variable-step-size LMS algorithm, StepSize is a vector
(not a scalar) and MATLAB changes its vector length to maintain consistency
with the new value of nWeights.

eqlvar = lineareq(10,varlms(0.01,0.01,0,1)) % Create equalizer object.
eqlvar.nWeights = 8 % Change the number of weights from 10 to 8.
% MATLAB automatically changes the sizes of eqlvar.Weights and
% eqlvar.WeightInputs.

The output below displays all the properties of the equalizer object before and
after the change in the value of the nWeights property. In the second listing of
properties, the nWeights, Weights, WeightInputs, and StepSize properties
all have different values compared to the first listing of properties.

eqlvar =

EqType: 'Linear Equalizer'
AlgType: 'Variable Step Size LMS'

nWeights: 10
nSampPerSym: 1

RefTap: 1
SigConst: [-1 1]
InitStep: 0.0100
IncStep: 0.0100
MinStep: 0
MaxStep: 1

LeakageFactor: 1
StepSize: [1x10 double]
Weights: [0 0 0 0 0 0 0 0 0 0]

WeightInputs: [0 0 0 0 0 0 0 0 0 0]
ResetBeforeFiltering: 1
NumSamplesProcessed: 0
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eqlvar =

EqType: 'Linear Equalizer'
AlgType: 'Variable Step Size LMS'

nWeights: 8
nSampPerSym: 1

RefTap: 1
SigConst: [-1 1]
InitStep: 0.0100
IncStep: 0.0100
MinStep: 0
MaxStep: 1

LeakageFactor: 1
StepSize: [1x8 double]
Weights: [0 0 0 0 0 0 0 0]

WeightInputs: [0 0 0 0 0 0 0 0]
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

Using Adaptive Equalizers

• “Equalize Using a Training Sequence in MATLAB” on page 3-298

• “Equalizing Using a Training Sequence in Simulink” on page 3-301

• “Equalize in Decision-Directed Mode Using MATLAB” on page 3-302

• “Equalize in Decision-Directed Mode Using Simulink” on page 3-303

• “Delays from Equalization” on page 3-304

• “Equalize Using a Loop” on page 3-306

Equalize Using a Training Sequence in MATLAB. This section describes
how to equalize a signal by using the equalize function to apply an adaptive
equalizer object to the signal. The equalize function also updates the
equalizer. This section assumes that you have already created an adaptive
equalizer object, as described in “Specify an Adaptive Equalizer” on page
3-294.
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For examples that complement those in this section, see the Adaptive
Equalization Simulation demo (part I and part II).

In typical applications, an equalizer begins by using a known sequence of
transmitted symbols when adapting the equalizer weights. The known
sequence, called a training sequence, enables the equalizer to gather
information about the channel characteristics. After the equalizer finishes
processing the training sequence, it adapts the equalizer weights in
decision-directed mode using a detected version of the output signal. To use a
training sequence when invoking the equalize function, include the symbols
of the training sequence as an input vector.

Note As an exception, CMA equalizers do not use a training sequence. If an
equalizer object is based on CMA, you should not include a training sequence
as an input vector.

The following code illustrates how to use equalize with a training sequence.
The training sequence in this case is just the beginning of the transmitted
message.
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% Set up parameters and signals.

M = 4; % Alphabet size for modulation

msg = randint(1500,1,M); % Random message

modmsg = pskmod(msg,M); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients

filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Equalize the received signal.

eq1 = lineareq(8, lms(0.01)); % Create an equalizer object.

eq1.SigConst = pskmod([0:M-1],M); % Set signal constellation.

[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

% Plot signals.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;

scatterplot(symbolest,1,trainlen,'g.',h);

scatterplot(eq1.SigConst,1,0,'k*',h);

legend('Filtered signal','Equalized signal',...

'Ideal signal constellation');

hold off;

% Compute error rates with and without equalization.

demodmsg_noeq = pskdemod(filtmsg,M); % Demodulate unequalized signal.

demodmsg = pskdemod(yd,M); % Demodulate detected signal from equalizer.

[nnoeq,rnoeq] = symerr(demodmsg_noeq(trainlen+1:end),...

msg(trainlen+1:end));

[neq,req] = symerr(demodmsg(trainlen+1:end),...

msg(trainlen+1:end));

disp('Symbol error rates with and without equalizer:')

disp([req rnoeq])

The example goes on to determine how many errors occur in trying to recover
the modulated message with and without the equalizer. The symbol error
rates, below, show that the equalizer improves the performance significantly.

Symbol error rates with and without equalizer:
0 0.3410

The example also creates a scatter plot that shows the signal before and after
equalization, as well as the signal constellation for QPSK modulation. Notice
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on the plot that the points of the equalized signal are clustered more closely
around the points of the signal constellation.

Equalizing Using a Training Sequence in Simulink. To train a non-CMA
equalizer block at the beginning of each frame throughout the simulation,
follow these steps:

1 Clear the Mode input port check box.

2 Provide the training sequence at the input port labeled Desired. Valid
training symbols are those listed in the Signal constellation vector.
The block operates in training mode at the beginning of each frame and
switches to decision-directed mode when it runs out of training symbols.

Typically, the symbol periods of the Input and Desired inputs match; that
is, the sample time of the Desired signal is k times the sample time of the
Input signal, where k is the Number of samples per symbol parameter
in the equalizer block. If your training sequence is constant throughout the
simulation, the Simulink Constant block is a convenient way to specify the
sequence without having to specify a sample time explicitly.
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To train a non-CMA equalizer block only on selected frames during the
simulation, see .

Equalize in Decision-Directed Mode Using MATLAB. Decision-directed
mode means the equalizer uses a detected version of its output signal when
adapting the weights. Adaptive equalizers typically start with a training
sequence (as mentioned in “Equalize Using a Training Sequence in MATLAB”
on page 3-298) and switch to decision-directed mode after exhausting all
symbols in the training sequence. CMA equalizers are an exception, using
neither training mode nor decision-directed mode.

For non-CMA equalizers, the equalize function operates in decision-directed
mode when one of these conditions is true:

• The syntax does not include a training sequence.

• The equalizer has exhausted all symbols in the training sequence and still
has more input symbols to process.

The example in “Equalize Using a Training Sequence in MATLAB” on page
3-298 uses training mode when processing the first trainlen symbols of the
input signal, and decision-directed mode thereafter. The example below
discusses another scenario.

Example: Equalizing Multiple Times, Varying the Mode

If you invoke equalize multiple times with the same equalizer object to
equalize a series of signal vectors, you might use a training sequence the first
time you call the function and omit the training sequence in subsequent calls.
Each iteration of the equalize function after the first one operates completely
in decision-directed mode. However, because the ResetBeforeFiltering
property of the equalizer object is set to 0, the equalize function uses
the existing state information in the equalizer object when starting each
iteration’s equalization operation. As a result, the training affects all
equalization operations, not just the first.

The code below illustrates this approach. Notice that the first call to equalize
uses a training sequence as an input argument, and the second call to
equalize omits a training sequence.
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M = 4; % Alphabet size for modulation
msg = randint(1500,1,M); % Random message
modmsg = pskmod(msg,M); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
chan = [.986; .845; .237; .123+.31i]; % Channel coefficients
filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Set up equalizer.
eqlms = lineareq(8, lms(0.01)); % Create an equalizer object.
eqlms.SigConst = pskmod([0:M-1],M); % Set signal constellation.
% Maintain continuity between calls to equalize.
eqlms.ResetBeforeFiltering = 0;

% Equalize the received signal, in pieces.
% 1. Process the training sequence.
s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));
% 2. Process some of the data in decision-directed mode.
s2 = equalize(eqlms,filtmsg(trainlen+1:800));
% 3. Process the rest of the data in decision-directed mode.
s3 = equalize(eqlms,filtmsg(801:end));
s = [s1; s2; s3]; % Full output of equalizer

Equalize in Decision-Directed Mode Using Simulink. Decision-directed
mode means that the equalizer uses a detected version of its output signal
when adapting the weights. Adaptive equalizers typically start with a
training sequence (as mentioned in ) and switch to decision-directed mode
after exhausting all symbols in the training sequence. CMA equalizers are
an exception, using neither training mode nor decision-directed mode. The
non-CMA equalizer blocks in this library operate in decision-directed mode
when one of these conditions is true:

• The equalizer started processing the current input frame in training mode,
exhausted all symbols in the training sequence frame, and still has more
input symbols to process.

• TheMode input port check box is selected and the Mode input signal is 0.
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Controlling the Use of Training or Decision-Directed Mode

You can configure a non-CMA equalizer block so that it adapts in training
mode for the beginning or the entirety of selected frames. To achieve this level
of control over the equalizer’s mode, follow these steps:

1 Enable the Mode input port by checking theMode input port check box.

2 Send a binary-valued scalar signal to the Mode input port. The Mode
input enables you to toggle back and forth between training mode and
decision-directed mode. The significance of this signal is as follows:

• When the Mode input is 0, the equalizer operates in decision-directed
mode on the entire frame and ignores the Desired input.

• When the Mode input is 1, the equalizer operates in training mode at the
beginning of the frame until it exhausts the symbols in the Desired
input, and operates in decision-directed mode afterwards. If the Mode
input is 1 and the Desired input has as many symbols as the Input
signal has, then the equalizer operates in training mode on the entire
frame.

Delays from Equalization. For proper equalization using adaptive
algorithms other than CMA, you should set the reference tap so that it exceeds
the delay, in symbols, between the transmitter’s modulator output and the
equalizer input. When this condition is satisfied, the total delay between the
modulator output and the equalizer output is equal to

(RefTap-1)/nSampPerSym

symbols. Because the channel delay is typically unknown, a common practice
is to set the reference tap to the center tap in a linear equalizer, or the center
tap of the forward filter in a decision-feedback equalizer.

For CMA equalizers, the expression above does not apply because a CMA
equalizer has no reference tap. If you need to know the delay, you can find
it empirically after the equalizer weights have converged. Use the xcorr
function to examine cross-correlations of the modulator output and the
equalizer output.
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Techniques for Working with Delays

Here are some typical ways to take a delay of D into account by padding or
truncating data:

• Pad your original data with D extra symbols at the end. Before comparing
the original data with the received data, omit the first D symbols of the
received data. In this approach, all the original data (not including the
padding) is accounted for in the received data.

• Before comparing the original data with the received data, omit the last
D symbols of the original data and the first D symbols of the received
data. In this approach, some of the original symbols are not accounted for
in the received data.

The example below illustrates the latter approach. For an example that
illustrates both approaches in the context of interleavers, see “Delays of
Convolutional Interleavers” on page 3-176.

M = 2; % Use BPSK modulation for this example.

msg = randint(1000,1,M); % Random data

modmsg = pskmod(msg,M); % Modulate.

trainlen = 100; % Length of training sequence

trainsig = modmsg(1:trainlen); % Training sequence

% Define an equalizer and equalize the received signal.

eqlin = lineareq(3,normlms(.0005,.0001),pskmod(0:M-1,M));

eqlin.RefTap = 2; % Set reference tap of equalizer.

[eqsig,detsym] = equalize(eqlin,modmsg,trainsig); % Equalize.

detmsg = pskdemod(detsym,M); % Demodulate the detected signal.

% Compensate for delay introduced by RefTap.

D = (eqlin.RefTap -1)/eqlin.nSampPerSym;

trunc_detmsg = detmsg(D+1:end); % Omit first D symbols of equalized data.

trunc_msg = msg(1:end-D); % Omit last D symbols.

% Compute bit error rate, ignoring training sequence.

[numerrs,ber] = biterr(trunc_msg(trainlen+1:end),...

trunc_detmsg(trainlen+1:end))
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The output is below.

numerrs =

0

ber =

0

Equalize Using a Loop. If your data is partitioned into a series of vectors
(that you process within a loop, for example), you can invoke the equalize
function multiple times, saving the equalizer’s internal state information
for use in a subsequent invocation. In particular, the final values of the
WeightInputs and Weights properties in one equalization operation should
be the initial values in the next equalization operation. This section gives an
example, followed by more general procedures for equalizing within a loop.

Example: Adaptive Equalization Within a Loop

The example below illustrates how to use equalize within a loop, varying the
equalizer between iterations. Because the example is long, this discussion
presents it in these steps:

If you want to equalize iteratively while potentially changing equalizers
between iterations, see Changing the Equalizer Between Iterations on page
310 for help generalizing from this example to other cases.

Initializing Variables

The beginning of the example defines parameters and creates three equalizer
objects:

• An RLS equalizer object.

• An LMS equalizer object.
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• A variable, eq_current, that points to the equalizer object to use in the
current iteration of the loop. Initially, this points to the RLS equalizer
object. After the second iteration of the loop, eq_current is redefined to
point to the LMS equalizer object.

% Set up parameters.

M = 16; % Alphabet size for modulation

sigconst = qammod(0:M-1,M); % Signal constellation for 16-QAM

chan = [1 0.45 0.3+0.2i]; % Channel coefficients

% Set up equalizers.

eqrls = lineareq(6, rls(0.99,0.1)); % Create an RLS equalizer object.

eqrls.SigConst = sigconst; % Set signal constellation.

eqrls.ResetBeforeFiltering = 0; % Maintain continuity between iterations.

eqlms = lineareq(6, lms(0.003)); % Create an LMS equalizer object.

eqlms.SigConst = sigconst; % Set signal constellation.

eqlms.ResetBeforeFiltering = 0; % Maintain continuity between iterations.

eq_current = eqrls; % Point to RLS for first iteration.

Simulating the System Using a Loop

The next portion of the example is a loop that

• Generates a signal to transmit and selects a portion to use as a training
sequence in the first iteration of the loop

• Introduces channel distortion

• Equalizes the distorted signal using the chosen equalizer for this iteration,
retaining the final state and weights for later use

• Plots the distorted and equalized signals, for comparison

• Switches to an LMS equalizer between the second and third iterations

% Main loop

for jj = 1:4

msg = randi([0 M-1],500,1); % Random message

modmsg = qammod(msg,M); % Modulate using 16-QAM.

% Set up training sequence for first iteration.

if jj == 1
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ltr = 200; trainsig = modmsg(1:ltr);

else

% Use decision-directed mode after first iteration.

ltr = 0; trainsig = [];

end

% Introduce channel distortion.

filtmsg = filter(chan,1,modmsg);

% Equalize the received signal.

s = equalize(eq_current,filtmsg,trainsig);

% Plot signals.

h = scatterplot(filtmsg(ltr+1:end),1,0,'bx'); hold on;

scatterplot(s(ltr+1:end),1,0,'g.',h);

scatterplot(sigconst,1,0,'k*',h);

legend('Received signal','Equalized signal','Signal constellation');

title(['Iteration #' num2str(jj) ' (' eq_current.AlgType ')']);

hold off;

% Switch from RLS to LMS after second iteration.

if jj == 2

eqlms.WeightInputs = eq_current.WeightInputs; % Copy final inputs.

eqlms.Weights = eq_current.Weights; % Copy final weights.

eq_current = eqlms; % Make eq_current point to eqlms.

end

end

The example produces one scatter plot for each iteration, indicating the
iteration number and the adaptive algorithm in the title. A sample plot is
below. Your plot might look different because this example uses random
numbers.
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Procedures for Equalizing Within a Loop

This section describes two procedures for equalizing within a loop. The first
procedure uses the same equalizer in each iteration, and the second is useful
if you want to change the equalizer between iterations.

Using the Same Equalizer in Each Iteration

The typical procedure for using equalize within a loop is as follows:

1 Before the loop starts, create the equalizer object that you want to use in
the first iteration of the loop.

2 Set the equalizer object’s ResetBeforeFiltering property to 0 to maintain
continuity between successive invocations of equalize.

3 Inside the loop, invoke equalize using a syntax like one of these:
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y = equalize(eqz,x,trainsig);
y = equalize(eqz,x);

The equalize function updates the state and weights of the equalizer
at the end of the current iteration. In the next iteration, the function
continues from where it finished in the previous iteration because
ResetBeforeFiltering is set to 0.

This procedure is similar to the one used in Example: Equalizing Multiple
Times, Varying the Mode on page 302. That example uses equalize multiple
times but not within a loop.

Changing the Equalizer Between Iterations

In some applications, you might want to modify the adaptive algorithm
between iterations. For example, you might use a CMA equalizer for the
first iteration and an LMS or RLS equalizer in subsequent iterations. The
procedure below gives one way to accomplish this, roughly following the
example in Example: Adaptive Equalization Within a Loop on page 306:

1 Before the loop starts, create the different kinds of equalizer objects that
you want to use during various iterations of the loop.

For example, create one CMA equalizer object, eqcma, and one LMS
equalizer object, eqlms.

2 For each equalizer object, set the ResetBeforeFiltering property to 0 to
maintain continuity between successive invocations of equalize.

3 Create a variable eq_current that points to the equalizer object you want
to use for the first iteration. Use = to establish the connection so that the
two objects get updated together:

eq_current = eqcma; % Point to eqcma.

The purpose of eq_current is to represent the equalizer used in each
iteration, where you can switch equalizers from one iteration to the next by
using a command like eq_current = eqlms. The example illustrates this
approach near the end of its loop.
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4 Inside the loop, perform these steps:

a Invoke equalize using a syntax like one of these:

y = equalize(eq_current,x,trainsig);
y = equalize(eq_current,x);

b Copy the values of the WeightInputs and Weights properties from
eq_current to the equalizer object that you want to use for the next
iteration. Use dot notation. For example,

eqlms.WeightInputs = eq_current.WeightInputs;
eqlms.Weights = eq_current.Weights;

c Redefine eq_current to point to the equalizer object that you want to
use for the next iteration, using =. Now eq_current is set up for the next
iteration, because it represents the new kind of equalizer but retains the
old values for the state and weights.

The reason for creating multiple equalizer objects and then copying the state
and weights, instead of simply changing the equalizer class or adaptive
algorithm in a single equalizer object, is that the class and adaptive algorithm
properties of an equalizer object are fixed.

MLSE Equalizers

• “Section Overview” on page 3-311

• “Equalizing a Vector Signal” on page 3-312

• “Equalizing in Continuous Operation Mode” on page 3-313

• “Use a Preamble or Postamble” on page 3-317

• “Using MLSE Equalizers in Simulink” on page 3-319

Section Overview
In Communications System Toolbox, the mlseeq function and MLSE
Equalizer block use the Viterbi algorithm to equalize a linearly modulated
signal through a dispersive channel. Both the function and the block output
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the maximum likelihood sequence estimate of the signal, using an estimate of
the channel modeled as a finite input response (FIR) filter.

Decoding a received signal uses these steps:

1 Applies the FIR filter, corresponding to the channel estimate, to the
symbols in the input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state
metric, which are the numbers assigned to the symbols at each step of the
Viterbi algorithm. The metrics are based on Euclidean distance.

3 Outputs the maximum likelihood sequence estimate of the signal, as a
sequence of complex numbers corresponding to the constellation points of
the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but is
computationally intensive.

For background material about MLSE equalizers, see the works listed in
“Selected Bibliography for Equalizers” on page 3-320.

When using the MLSE Equalizer block, you specify the channel estimate
and the signal constellation that the modulator in your model uses. If
applicable, you can also specify a preamble and/or postamble that you expect
to accompany your data. For full details on options, see the reference page for
the MLSE Equalizer block.

Equalizing a Vector Signal
In its simplest form, the mlseeq function equalizes a vector of modulated
data when you specify the estimated coefficients of the channel (modeled
as an FIR filter), the signal constellation for the modulation type, and the
traceback depth that you want the Viterbi algorithm to use. Larger values for
the traceback depth can improve the results from the equalizer but increase
the computation time.

An example of the basic syntax for mlseeq is below.

M = 4; const = pskmod([0:M-1],M); % 4-PSK constellation
msg = pskmod([1 2 2 0 3 1 3 3 2 1 0 2 3 0 1]',M); % Modulated message
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chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
tblen = 10; % Traceback depth for equalizer
chanest = chcoeffs; % Assume the channel is known exactly.
msgEq = mlseeq(filtmsg,chanest,const,tblen,'rst'); % Equalize.

The mlseeq function has two operation modes:

• Continuous operation mode enables you to process a series of vectors
using repeated calls to mlseeq, where the function saves its internal state
information from one call to the next. To learn more, see “Equalizing in
Continuous Operation Mode” on page 3-313.

• Reset operation mode enables you to specify a preamble and postamble that
accompany your data. To learn more, see “Use a Preamble or Postamble”
on page 3-317.

If you are not processing a series of vectors and do not need to specify a
preamble or postamble, the operation modes are nearly identical. However,
they differ in that continuous operation mode incurs a delay, while reset
operation mode does not. The example above could have used either mode,
except that substituting continuous operation mode would have produced a
delay in the equalized output. To learn more about the delay in continuous
operation mode, see “Delays in Continuous Operation Mode” on page 3-314.

Equalizing in Continuous Operation Mode
If your data is partitioned into a series of vectors (that you process within a
loop, for example), continuous operation mode is an appropriate way to use the
mlseeq function. In continuous operation mode, mlseeq can save its internal
state information for use in a subsequent invocation and can initialize using
previously stored state information. To choose continuous operation mode,
use 'cont' as an input argument when invoking mlseeq.

Note Continuous operation mode incurs a delay, as described in “Delays in
Continuous Operation Mode” on page 3-314. Also, continuous operation mode
cannot accommodate a preamble or postamble.
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Procedure for Continuous Operation Mode. The typical procedure for
using continuous mode within a loop is as follows:

1 Before the loop starts, create three empty matrix variables (for example,
sm, ts, ti) that eventually store the state metrics, traceback states, and
traceback inputs for the equalizer.

2 Inside the loop, invoke mlseeq using a syntax like

[y,sm,ts,ti] = mlseeq(x,chcoeffs,const,tblen,'cont',nsamp,sm,ts,ti);

Using sm, ts, and ti as input arguments causes mlseeq to continue from
where it finished in the previous iteration. Using sm, ts, and ti as output
arguments causes mlseeq to update the state information at the end of
the current iteration. In the first iteration, sm, ts, and ti start as empty
matrices, so the first invocation of the mlseeq function initializes the
metrics of all states to 0.

Delays in Continuous Operation Mode. Continuous operation mode with
a traceback depth of tblen incurs an output delay of tblen symbols. This
means that the first tblen output symbols are unrelated to the input signal,
while the last tblen input symbols are unrelated to the output signal. For
example, the command below uses a traceback depth of 3, and the first 3
output symbols are unrelated to the input signal of ones(1,10).

y = mlseeq(ones(1,10),1,[-7:2:7],3,'cont')
y =

-7 -7 -7 1 1 1 1 1 1 1

Keeping track of delays from different portions of a communication system
is important, especially if you compare signals to compute error rates. The
example in “Example: Continuous Operation Mode” on page 3-314 illustrates
how to take the delay into account when computing an error rate.

Example: Continuous Operation Mode. The example below illustrates
the procedure for using continuous operation mode within a loop. Because the
example is long, this discussion presents it in multiple steps:
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Initializing Variables

The beginning of the example defines parameters, initializes the state
variables sm, ts, and ti, and initializes variables that accumulate results
from each iteration of the loop.

n = 200; % Number of symbols in each iteration
numiter = 25; % Number of iterations
M = 4; % Use 4-PSK modulation.
const = pskmod(0:M-1,M); % PSK constellation
chcoeffs = [1 ; 0.25]; % Channel coefficients
chanest = chcoeffs; % Channel estimate
tblen = 10; % Traceback depth for equalizer
nsamp = 1; % Number of input samples per symbol
sm = []; ts = []; ti = []; % Initialize equalizer data.
% Initialize cumulative results.
fullmodmsg = []; fullfiltmsg = []; fullrx = [];

Simulating the System Using a Loop

The middle portion of the example is a loop that generates random data,
modulates it using baseband PSK modulation, and filters it. Finally,
mlseeq equalizes the filtered data. The loop also updates the variables that
accumulate results from each iteration of the loop.

for jj = 1:numiter
msg = randint(n,1,M); % Random signal vector
modmsg = pskmod(msg,M); % PSK-modulated signal
filtmsg = filter(chcoeffs,1,modmsg); % Filtered signal

% Equalize, initializing from where the last iteration
% finished, and remembering final data for the next iteration.
[rx sm ts ti] = mlseeq(filtmsg,chanest,const,tblen,...

'cont',nsamp,sm,ts,ti);

% Update vectors with cumulative results.
fullmodmsg = [fullmodmsg; modmsg];
fullfiltmsg = [fullfiltmsg; filtmsg];
fullrx = [fullrx; rx];

end

3-315



3 System Design

Computing an Error Rate and Plotting Results

The last portion of the example computes the symbol error rate from all
iterations of the loop. The symerr function compares selected portions of the
received and transmitted signals, not the entire signals. Because continuous
operation mode incurs a delay whose length in samples is the traceback depth
(tblen) of the equalizer, it is necessary to exclude the first tblen samples
from the received signal and the last tblen samples from the transmitted
signal. Excluding samples that represent the delay of the equalizer ensures
that the symbol error rate calculation compares samples from the received
and transmitted signals that are meaningful and that truly correspond to
each other.

The example also plots the signal before and after equalization in a scatter
plot. The points in the equalized signal coincide with the points of the ideal
signal constellation for 4-PSK.

% Compute total number of symbol errors. Take the delay into account.
numsymerrs = symerr(fullrx(tblen+1:end),fullmodmsg(1:end-tblen))

% Plot signal before and after equalization.
h = scatterplot(fullfiltmsg); hold on;
scatterplot(fullrx,1,0,'r*',h);
legend('Filtered signal before equalization','Equalized signal',...

'Location','NorthOutside');
hold off;

The output and plot follow.

numsymerrs =

0
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Use a Preamble or Postamble
Some systems include a sequence of known symbols at the beginning or end
of a set of data. The known sequence at the beginning or end is called a
preamble or postamble, respectively. The mlseeq function can accommodate a
preamble and postamble that are already incorporated into its input signal.
When you invoke the function, you specify the preamble and postamble as
integer vectors that represent the sequence of known symbols by indexing into
the signal constellation vector. For example, a preamble vector of [1 4 4]
and a 4-PSK signal constellation of [1 j -1 -j] indicate that the modulated
signal begins with [1 -j -j].

If your system uses a preamble without a postamble, use a postamble vector
of [] when invoking mlseeq. Similarly, if your system uses a postamble
without a preamble, use a preamble vector of [].
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Use a Preamble in MATLAB. The example below illustrates how to
accommodate a preamble when using mlseeq. The same preamble symbols
appear at the beginning of the message vector and in the syntax for mlseeq. If
you want to use a postamble, you can append it to the message vector and also
include it as the last input argument for mlseeq. In this example, however,
the postamble input in the mlseeq syntax is an empty vector because the
system uses no postamble.

M = 4; % Use 4-PSK modulation.
const = pskmod(0:3,4); % PSK constellation
tblen = 16; % Traceback depth for equalizer

preamble = [3; 1]; % Expected preamble, as integers
msgIdx = randint(98,1,M); % Random symbols
msgIdx = [preamble; msgIdx]; % Include preamble at the beginning.
msg = pskmod(msgIdx,M); % Modulated message
chcoeffs = [.623; .489+.234i; .398i; .21]; % Channel coefficients
chanest = chcoeffs; % Channel estimate
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
d = mlseeq(filtmsg,chanest,const,tblen,'rst',1,preamble,[]);

[nsymerrs ser] = symerr(msg,d) % Symbol error rate
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The output is below.

nsymerrs =

0

ser =

0

Using MLSE Equalizers in Simulink
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly
modulated signal through a dispersive channel. The block outputs the
maximum likelihood sequence estimate (MLSE) of the signal, using your
estimate of the channel modeled as a finite input response (FIR) filter.

The block decodes the received signal using these steps:

1 Applies the FIR filter corresponding to the channel estimate to the symbols
in the input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state
metric, which are the numbers assigned to the symbols at each step of
the Viterbi algorithm.

3 Outputs the maximum likelihood sequence estimate of the signal, as a
sequence of complex numbers corresponding to the constellation points of
the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but is
computationally intensive.

When using the MLSE Equalizer block, you specify the channel estimate
and the signal constellation that the modulator in your model uses. If
applicable, you can also specify a preamble and/or postamble that you expect
to accompany your data. For full details on options, see the reference page for
the MLSE Equalizer block.
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Multiple-Input Multiple-Output (MIMO)

In this section...

“Orthogonal Space-Time Block Codes (OSTBC)” on page 3-321

“MIMO Fading Channel” on page 3-322

“MIMO Demos” on page 3-322

“OSTBC Over 3x2 Rayleigh Fading Channel” on page 3-323

“Selected Bibliography for MIMO systems” on page 3-326

The use of Multiple-Input Multiple-Output (MIMO) techniques has
revolutionized wireless communications systems with potential gains in
capacity when using multiple antennas at both transmitter and receiver
ends of a communications system. New techniques, which account for the
extra spatial dimension, have been adopted to realize these gains in new and
previously existing systems.

MIMO technology has been adopted in multiple wireless systems, including
Wi-Fi, WiMAX, LTE, and is proposed for future standards (such as
LTE-Advanced and IMT-Advanced).

The Communications System Toolbox product offers components to model:

• OSTBC (orthogonal space-time block coding technique)

• MIMO Fading Channels

and demos highlighting the use of these components in applications.

For background material on the subject of MIMO systems, see the works
listed in Selected Bibliography for MIMO systems.

Orthogonal Space-Time Block Codes (OSTBC)
The Communications System Toolbox product provides components to model
Orthogonal Space Time Block Coding (OSTBC) – a MIMO technique which
offers spatial diversity gain to achieve higher data rates [4,6,8].
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In Simulink, the OSTBC Encoder and OSTBC Combiner blocks, residing in
the MIMO block library, implement the orthogonal space time block coding
technique. These two blocks offer a variety of specific codes (with different
rates) for up to 4 transmit and 8 receive antenna systems. The encoder
block is used at the transmitter to map symbols to multiple antennas while
the combiner block is used at the receiver to extract the soft information
per symbol using the received signal and the channel state information.
You access the MIMO library by double clicking the icon in the main
Communications System Toolbox block library. Alternatively, you can type
commmimo at the MATLAB command line.

The OSTBC technique is an attractive scheme because it can achieve the full
(maximum) spatial diversity order and have symbol-wise maximum-likelihood
(ML) decoding. For more information pertaining to the algorithmic details
and the specific codes implemented, see OSTBC Combining Algorithms on
the OSTBC Combiner block help page and OSTBC Encoding Algorithms on
the OSTBC Encoder block help page. Similar functionality is available in
MATLAB by using the comm.OSTBCCombiner and comm.OSTBCEncoder System
objects.

MIMO Fading Channel
The Communications System Toolbox software also includes a MIMO
fading channel object. You can use this object to model the fading channel
characteristics of MIMO links. The object models both Rayleigh and Rician
fading, and uses the Kronecker model for the spatial correlation between
the links [1].

For more information, see the mimochan Help page

MIMO Demos
The following demos illustrate MIMO techniques or the use of MIMO
components:

MATLAB Demos
Concatenated OSTBC with TCM: OSTBC System objects

IEEE 802.11n Channel Models: mimochan object
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IEEE 802.16 Channel Models: mimochan object

Introduction to MIMO Systems: Comparing MRC and OSTBC techniques

Spatial Multiplexing: techniques offering multiplexing gain

Simulink Demos
Adaptive MIMO System with OSTBC: OSTBC and MIMO channel in Simulink

Concatenated OSTBC with TCM: OSTBC with blocks

IEEE® 802.16-2004 OFDM PHY Link, Including Space-Time Block Coding

MIMO Decoder Using Simulink® and the MATLAB™ Function Block: Lattice
decoder. You must install a Simulink® HDL Coder™ user license to run this
demo.

OSTBC Over 3x2 Rayleigh Fading Channel
This example demonstrates the use of Orthogonal Space-Time Block Codes
(OSTBC) to achieve diversity gains in a multiple-input multiple-output
(MIMO) communication system. The example shows the transmission of
data over three transmit antennas and two receive antennas (hence the
3x2 notation) using independent Rayleigh fading per link. This description
covers the following:

• Overview of the Simulation

• Orthogonal Space-Time Block Code

• Performance

Overview of the Simulation
The model is shown in the following figure. To open the model, type
doc_ostbc32 at the MATLAB command line. The simulation creates a
random binary signal, modulates it using a binary phase shift keying (BPSK)

technique, and then encodes the waveform using a rate
3
4
orthogonal

space-time block code for transmission over the fading channel. The fading
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channel models six independent links, due to the three transmit by two
receive antennae configuration as single-path Rayleigh fading processes. The
simulation adds white Gaussian noise at the receiver. Then, it combines the
signals from both receive antennas into a single stream for demodulation. For
this combining process, the model assumes perfect knowledge of the channel
gains at the receiver. Finally, the simulation compares the demodulated
data with the original transmitted data, computing the bit error rate. The
simulation ends after processing 100 errors or 1e6 bits, whichever comes first.

Orthogonal Space-Time Block Code
This simulation uses an orthogonal space-time block code with three transmit
antennas and a rate ¾ code, as shown below
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where s1, s2, s3 correspond to the three symbol inputs for which the output
is given by the previous matrix. Note in the simulation that the input to the
OSTBC Encoder block is a 3x1 vector signal and the output is a 4x3 matrix.
The number of columns in the output signal indicates the number of transmit
antennas for this simulation, where the first dimension is for time.

For the selected code, the output signal power per time step is

( )
.

12 3
4

2 25
− = W . Also, note that the channel symbol period for this

simulation is 1
3
4

7 53 4e e− −=* . sec , due to the use of rate
3
4
code. These

two values are used in calibrating the white Gaussian noise added in the
simulation. The parameters that the Receive Noise block specifies apply for
each receiver the system employs.

Performance
Now compare the performance of the code with theoretical results using
BERtool as an aid. For the theoretical results, the EbNo is directly scaled by
the diversity order (six in this case). For the simulation, in the Receive Noise
block, we account for only the diversity due to the transmitters (hence, the
EbNo parameter is scaled by a factor of three).

The figure below compares the simulated BER for a range of EbNo values
with the theoretical results for a diversity order of six.
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Note the close alignment of the simulated results with the theoretical
(especially. at low EbNo values). The fading channel modeled in the
simulation is not completely static (has a low Doppler). As a result the
channel is not held constant over the block symbols. Varying this parameter
for the channel shows little variation between the results compared to the
theoretical curve.
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AWGN Channel

In this section...

“Section Overview” on page 4-2

“AWGN Channel Noise Level” on page 4-2

Section Overview
An AWGN channel adds white Gaussian noise to the signal that passes
through it. You can create an AWGN channel in a model using the
comm.AWGNChannel System object, the AWGN Channel block, or the awgn
function.

The following demos use the awgn function: basicsimdemo, vitsimdemo, and
scattereyedemo.

AWGN Channel Noise Level
The relative power of noise in an AWGN channel is typically described by
quantities such as

• Signal-to-noise ratio (SNR) per sample. This is the actual input parameter
to the awgn function.

• Ratio of bit energy to noise power spectral density (EbNo). This quantity is
used by BERTool and performance evaluation functions in this toolbox.

• Ratio of symbol energy to noise power spectral density (EsNo)

Relationship Between EsNo and EbNo
The relationship between EsNo and EbNo, both expressed in dB, is as follows:

E N E N ks b/ / log ( )0 0 1010 (dB)  (dB)= +

where k is the number of information bits per symbol.

In a communication system, k might be influenced by the size of the
modulation alphabet or the code rate of an error-control code. For example,
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if a system uses a rate-1/2 code and 8-PSK modulation, then the number of
information bits per symbol (k) is the product of the code rate and the number
of coded bits per modulated symbol: (1/2) log2(8) = 3/2. In such a system, three
information bits correspond to six coded bits, which in turn correspond to
two 8-PSK symbols.

Relationship Between EsNo and SNR
The relationship between EsNo and SNR, both expressed in dB, is as follows:

E N T T SNRs sym samp/ log /0 1010 (dB)  (dB)   for complex inpu= ( ) + tt signals

 (dB)  (dB) for rE N T T SNRs sym samp/ log . /0 1010 0 5= ( ) + eeal input signals

where Tsym is the signal’s symbol period and Tsamp is the signal’s sampling
period.

For example, if a complex baseband signal is oversampled by a factor of 4,
then EsNo exceeds the corresponding SNR by 10 log10(4).

Derivation for Complex Input Signals. You can derive the relationship
between EsNo and SNR for complex input signals as follows:

E N S T N B

T F S N

s sym n

sym s

/ log ( ) /( / )

log ( ) ( / )

0 10

10

10

10

 (dB) = ⋅( )
= ⋅( ))
= ( ) +10 10log /T T SNRsym samp  (dB)

where

• S = Input signal power, in watts

• N = Noise power, in watts

• Bn = Noise bandwidth, in Hertz

• Fs = Sampling frequency, in Hertz

Note that Bn= Fs = 1/Tsamp.
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Behavior for Real and Complex Input Signals. The following figures
illustrate the difference between the real and complex cases by showing the
noise power spectral densities Sn(f) of a real bandpass white noise process
and its complex lowpass equivalent.
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Binary Symmetric Channels
Binary error channels process binary signals by adding noise modulo 2. This
library contains the Binary Symmetric Channel block, which either preserves
or perturbs each vector element independently. It requires a probability that
applies independently to each noise element. An example using the Binary
Symmetric Channel block is in the section “Design a Rate 2/3 Feedforward
Encoder Using Simulink” on page 3-59.
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Fading Channels

In this section...

“Overview of Fading Channels” on page 4-6

“Methodology for Simulating Multipath Fading Channels: ” on page 4-9

“Specify Fading Channels” on page 4-12

“Specify the Doppler Spectrum of a Fading Channel” on page 4-16

“Configure Channel Objects” on page 4-21

“Use Fading Channels” on page 4-24

“Rayleigh Fading Channel” on page 4-25

“Rician Fading Channel” on page 4-46

“Additional Examples Using Fading Channels” on page 4-49

Overview of Fading Channels
Using Communications System Toolbox you can implement fading channels
using objects or blocks. Rayleigh and Rician fading channels are useful models
of real-world phenomena in wireless communications. These phenomena
include multipath scattering effects, time dispersion, and Doppler shifts that
arise from relative motion between the transmitter and receiver. This section
gives a brief overview of fading channels and describes how to implement
them using the toolbox.

The figure below depicts direct and major reflected paths between a stationary
radio transmitter and a moving receiver. The shaded shapes represent
reflectors such as buildings.
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The major paths result in the arrival of delayed versions of the signal at the
receiver. In addition, the radio signal undergoes scattering on a local scale
for each major path. Such local scattering is typically characterized by a
large number of reflections by objects near the mobile. These irresolvable
components combine at the receiver and give rise to the phenomenon known
as multipath fading. Due to this phenomenon, each major path behaves as
a discrete fading path. Typically, the fading process is characterized by a
Rayleigh distribution for a nonline-of-sight path and a Rician distribution
for a line-of-sight path.

The relative motion between the transmitter and receiver causes Doppler
shifts. Local scattering typically comes from many angles around the mobile.
This scenario causes a range of Doppler shifts, known as the Doppler
spectrum. The maximum Doppler shift corresponds to the local scattering
components whose direction exactly opposes the mobile’s trajectory.

Implement Fading Channel Using an Object
A baseband channel model for multipath propagation scenarios that you
implement using objects includes:

• N discrete fading paths, each with its own delay and average power gain. A
channel for which N = 1 is called a frequency-flat fading channel. A channel
for which N > 1 is experienced as a frequency-selective fading channel by a
signal of sufficiently wide bandwidth.

• A Rayleigh or Rician model for each path.

• Default channel path modeling using a Jakes Doppler spectrum, with a
maximum Doppler shift that can be specified. Other types of Doppler
spectra allowed (identical or different for all paths) include: flat, restricted
Jakes, asymmetrical Jakes, Gaussian, bi-Gaussian, and rounded.

If the maximum Doppler shift is set to 0 or omitted during the construction
of a channel object, then the object models the channel as static (i.e., fading
does not evolve with time), and the Doppler spectrum specified has no
effect on the fading process.

Some additional information about typical values for delays and gains is in
“Choose Realistic Channel Property Values” on page 4-22
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Implement Fading Channel Using a Block
The Channels block library includes Rayleigh and Rician fading blocks
that can simulate real-world phenomena in mobile communications. These
phenomena include multipath scattering effects, as well as Doppler shifts that
arise from relative motion between the transmitter and receiver.

Note To model a channel that involves both fading and additive white
Gaussian noise, use a fading channel block connected in series with the
AWGN Channel block, where the fading channel block comes first.

The table below indicates the situations in which each fading channel block is
appropriate.

Signal Path Channel Block

Direct line-of-sight path from
transmitter to receiver

Multipath Rician Fading Channel

One or more major reflected paths
from transmitter to receiver

Multipath Rayleigh Fading Channel

In the case of multiple major reflected paths, a single instance of the Multipath
Rayleigh Fading Channel block can model all of them simultaneously. The
number of paths that the block uses is the length of either the Delay vector
or the Gain vector parameter, whichever length is larger. (If both of these
parameters are vectors, they must have the same length; if exactly one of
these parameters is a scalar, the block expands it into a vector whose size
matches that of the other vector parameter.)

Choosing appropriate block parameters for your situation is important. For
more details about the parameters of fading channel blocks, see

• The reference pages for the Multipath Rayleigh Fading Channel block and
the Multipath Rician Fading Channel block

• The “Choose Realistic Channel Property Values” on page 4-22 section
under “Configuring Channel Objects” in the Communications System
Toolbox documentation
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Compensate for Fading Response
A communication system involving a fading channel usually requires
component(s) that compensate for the fading response. Typical approaches to
compensate for fading include:

• Differential modulation or a one-tap equalizer helps compensate for a
frequency-flat fading channel. See the M-DPSK Modulator Baseband block
Help page or the example in “Compare Empirical Results to Theoretical
Results” on page 4-26 for information about implementing differential
modulation.

• An equalizer with multiple taps helps compensate for a frequency-selective
fading channel. See for more information.

The Communications Link with Adaptive Equalization demo illustrates
why compensating for a fading channel is necessary.

Visualize a Fading Channel
You can plot a fading channel’s characteristics using channel visualization
tools.

For communication systems that you implement using objects, see “Channel
Visualization” on page 6-43

For communication systems that you implement using blocks, there are two
ways to visualize fading channel response. One way is to double-click the
block during a simulation. The second way is to select the Open channel
visualization at start of simulation check box in the block dialog box.

Methodology for Simulating Multipath Fading
Channels:
The Rayleigh and Rician multipath fading channel simulators in
Communications System Toolbox use the band-limited discrete multipath
channel model of section 9.1.3.5.2 in [1]. This implementation assumes
that the delay power profile and the Doppler spectrum of the channel are
separable [1]. The multipath fading channel is therefore modeled as a linear

finite impulse-response (FIR) filter. Let si{ } denote the set of samples at the
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input to the channel. Then the samples yi{ } at the output of the channel
are related to si{ } through:

y s gi i n n
n N

N
= −

=−
∑

1

2

where gn{ } is the set of tap weights given by:

g a
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n N n Nn k
k

sk

K
= −

⎡
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⎤

⎦
⎥ − ≤ ≤

=
∑ sinc , 

τ
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1 2

In the equations above:

• Ts is the input sample period to the channel.

• τk{ } , where 1 ≤ ≤k K , is the set of path delays. K is the total number of
paths in the multipath fading channel.

• ak{ } , where 1 ≤ ≤k K , is the set of complex path gains of the multipath
fading channel. These path gains are uncorrelated with each other.

• N1 and N2 are chosen so that gn is small when n is less than −N1

or greater than N2 .

Each path gain process ak is generated by the following steps:

1 A complex uncorrelated (white) Gaussian process with zero mean and unit
variance is generated in discrete time.

2 The complex Gaussian process is filtered by a Doppler filter with frequency

response H f S f( ) ( )= , where S f( ) denotes the desired Doppler power
spectrum.
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3 The filtered complex Gaussian process is interpolated so that its sample
period is consistent with that of the input signal. A combination of linear
and polyphase interpolation is used.

4 The resulting complex process zk is scaled to obtain the correct average
path gain. In the case of a Rayleigh channel, the fading process is obtained
as:

a zk k k= Ω
where

Ωk kE a= ⎡
⎣

⎤
⎦

2

In the case of a Rician channel, the fading process is obtained as:
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where Kr k, is the Rician K-factor of the k-th path, fd LOS k, , is the Doppler

shift of the line-of-sight component of the k-th path (in Hz), and LOS k, is
the initial phase of the line-of-sight component of the k-th path (in rad).

At the input to the band-limited multipath channel model, the transmitted
symbols must be oversampled by a factor at least equal to the bandwidth
expansion factor introduced by pulse shaping. For example, if sinc pulse
shaping is used, for which the bandwidth of the pulse-shaped signal is equal
to the symbol rate, then the bandwidth expansion factor is 1, and, in the ideal
case, at least one sample-per-symbol is required at the input to the channel.
If a raised cosine (RC) filter with a factor in excess of 1 is used, for which
the bandwidth of the pulse-shaped signal is equal to twice the symbol rate,
then the bandwidth expansion factor is 2, and, in the ideal case, at least two
samples-per-symbol are required at the input to the channel.

For additional information, see the article A Matlab-based Object-Oriented
Approach to Multipath Fading Channel Simulation, located on
MATLABCentral.
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Specify Fading Channels
Communications System Toolbox models a fading channel as a linear FIR
filter. Filtering a signal using a fading channel involves these steps:

1 Create a channel object that describes the channel that you want to use.
A channel object is a type of MATLAB variable that contains information
about the channel, such as the maximum Doppler shift.

2 Adjust properties of the channel object, if necessary, to tailor it to your
needs. For example, you can change the path delays or average path gains.

Note Setting the maximum path delay greater than 100 samples may
generate an ‘Out of memory’ error.

3 Apply the channel object to your signal using the filter function.

This section describes how to define, inspect, and manipulate channel objects.
The topics are:

• “Creating Channel Objects” on page 4-12

• “Display Object Properties” on page 4-13

• “Change Object Properties” on page 4-15

• “Relationships Among Channel Object Properties” on page 4-16

Creating Channel Objects
The rayleighchan and ricianchan functions create fading channel objects.
The table below indicates the situations in which each function is suitable.
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Function Object Situation Modeled

rayleighchan Rayleigh fading
channel object

One or more major
reflected paths

ricianchan Rician fading channel
object

One direct line-of-sight
path, possibly combined
with one or more major
reflected paths

For example, the command below creates a channel object representing a
Rayleigh fading channel that acts on a signal sampled at 100,000 Hz. The
maximum Doppler shift of the channel is 130 Hz.

c1 = rayleighchan(1/100000,130); % Rayleigh fading channel object

The object c1 is a valid input argument for the filter function. To learn
how to use the filter function to filter a signal using a channel object, see
“Use Fading Channels” on page 4-24.

Duplicate and Copy Objects. Another way to create an object is to
duplicate an existing object and then adjust the properties of the new object, if
necessary. If you do this, it is important to use a copy command such as

c2 = copy(c1); % Copy c1 to create an independent c2.

instead of c2 = c1. The copy command creates a copy of c1 that is
independent of c1. By contrast, the command c2 = c1 creates c2 as merely a
reference to c1, so that c1 and c2 always have indistinguishable content.

Display Object Properties
A channel object has numerous properties that record information about
the channel model, about the state of a channel that has already filtered a
signal, and about the channel’s operation on a future signal. You can view
the properties in these ways:

• To view all properties of a channel object, enter the object’s name in the
Command Window.
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• To view a specific property of a channel object or to assign the property’s
value to a variable, enter the object’s name followed by a dot (period),
followed by the name of the property.

In the example below, entering c1 causes MATLAB to display all properties
of the channel object c1. Some of the properties have values from the
rayleighchan command that created c1, while other properties have default
values.

c1 = rayleighchan(1/100000,130); % Create object.
c1 % View all properties of c1.
g = c1.PathGains % Retrieve the PathGains property of c1.

The output is

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays: 0
AvgPathGaindB: 0

NormalizePathGains: 1
StoreHistory: 0

StorePathGains: 0
PathGains: -0.0428 + 0.4732i

ChannelFilterDelay: 0
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

g =

-0.0428 + 0.4732i

A Rician fading channel object has an additional property that does not
appear above, namely, a scalar KFactor property.

For more information about what each channel property means, see the
reference page for the rayleighchan or ricianchan function.
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Change Object Properties
To change the value of a writeable property of a channel object, issue an
assignment statement that uses dot notation on the channel object. More
specifically, dot notation means an expression that consists of the object’s
name, followed by a dot, followed by the name of the property.

The example below illustrates how to change the ResetBeforeFiltering
property, indicating you do not want to reset the channel before each filtering
operation.

c1 = rayleighchan(1/100000,130) % Create object.
c1.ResetBeforeFiltering = 0 % Do not reset before filtering.

The output below displays all the properties of the channel object before and
after the change in the value of the ResetBeforeFiltering property. In
the second listing of properties, the ResetBeforeFiltering property has
the value 0.

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130

PathDelays: 0
AvgPathGaindB: 0

NormalizePathGains: 1
StoreHistory: 0

StorePathGains: 0
PathGains: 0.5781 + 0.9020i

ChannelFilterDelay: 0
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

c1 =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 130
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PathDelays: 0
AvgPathGaindB: 0

NormalizePathGains: 1
StoreHistory: 0

StorePathGains: 0
PathGains: 0.5781 + 0.9020i

ChannelFilterDelay: 0
ResetBeforeFiltering: 0
NumSamplesProcessed: 0

Note Some properties of a channel object are read-only. For example, you
cannot assign a new value to the NumSamplesProcessed property because the
channel automatically counts the number of samples it has processed since
the last reset.

Relationships Among Channel Object Properties
Some properties of an channel object are related to each other such that when
one property’s value changes, another property’s value must change in some
corresponding way to keep the channel object consistent. For example, if you
change the vector length of PathDelays, then the value of AvgPathGaindB
must change so that its vector length equals that of the new value of
PathDelays. This is because the length of each of the two vectors equals the
number of discrete paths of the channel. For details about linked properties
and an example, see the reference page for rayleighchan or ricianchan.

Specify the Doppler Spectrum of a Fading Channel
The Doppler spectrum of a channel object is specified through its
DopplerSpectrum property. The value of this property must be either:

• A Doppler object. In this case, the same Doppler spectrum applies to each
path of the channel object.

• A vector of Doppler objects of the same length as the PathDelays vector
property. In this case, the Doppler spectrum of each path is given by the
corresponding Doppler object in the vector.
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A Doppler object contains all the properties used to characterize the Doppler
spectrum, with the exception of the maximum Doppler shift, which is a
property of the channel object. This section describes how to create and
manipulate Doppler objects, and how to assign them to the DopplerSpectrum
property of channel objects.

Create a Doppler Object
The sole purpose of Doppler objects is to specify the value of the
DopplerSpectrum property of channel objects. Doppler objects can be created
using one of seven functions: doppler.ajakes, doppler.bigaussian,
doppler.jakes, doppler.rjakes, doppler.flat, doppler.gaussian, and
doppler.rounded. For a description of each of these functions and the
underlying theory, refer to their corresponding reference pages.

For example, a Gaussian spectrum with a normalized (by the maximum
Doppler shift of the channel) standard deviation of 0.1, can be created as:

d = doppler.gaussian(0.1);

Duplicate Doppler Objects
As in the case of channel objects, Doppler objects can be duplicated using the
copy function. The command:

d2 = copy(d1);

creates a Doppler object d2 with the same properties as that of d1. d1 and d2
are then separate instances of a Doppler object, in that modifying either one
will not affect the other. Using d1 = d2 instead will cause both d1 and d2 to
reference the same instance of a Doppler object, in that modifying either one
will cause the same modification to the other.

View and Change Doppler Object Properties
The syntax for viewing and changing Doppler object properties is the same as
for the case of channel objects (see “Display Object Properties” on page 4-13
and “Change Object Properties” on page 4-15). The function disp can be used
with Doppler objects to display their properties.
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In the following example, a rounded Doppler object with default properties is
created and displayed, and the third element of its CoeffRounded property
is modified:

dr = doppler.rounded

dr =

SpectrumType: 'Rounded'
CoeffRounded: [1 -1.7200 0.7850]

dr.CoeffRounded(3) = 0.8250

dr =

SpectrumType: 'Rounded'
CoeffRounded: [1 -1.7200 0.8250]

Note that the property SpectrumType, which is common to all Doppler objects,
is read-only. It is automatically specified at object construction, and cannot
be modified. If you wish to use a different Doppler spectrum type, you need
to create a new Doppler object of the desired type.

Use Doppler Objects Within Channel Objects
The DopplerSpectrum property of a channel object can be changed by
assigning to it a Doppler object or a vector of Doppler objects. The following
example illustrates how to change the default Jakes Doppler spectrum of a
constructed Rayleigh channel object to a flat Doppler spectrum:

>> h = rayleighchan(1/9600, 100)

h =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0417e-004

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 100

PathDelays: 0
AvgPathGaindB: 0

NormalizePathGains: 1
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StoreHistory: 0
StorePathGains: 0

PathGains: -0.4007 - 0.2748i
ChannelFilterDelay: 0

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

>> dop_flat = doppler.flat

dop_flat =

SpectrumType: 'Flat'

>> h.DopplerSpectrum = dop_flat

h =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0417e-004

DopplerSpectrum: [1x1 doppler.flat]
MaxDopplerShift: 100

PathDelays: 0
AvgPathGaindB: 0

NormalizePathGains: 1
StoreHistory: 0

StorePathGains: 0
PathGains: -0.4121 - 0.2536i

ChannelFilterDelay: 0
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

The following example shows how to change the default Jakes Doppler
spectrum of a constructed Rician channel object to a Gaussian Doppler
spectrum with normalized standard deviation of 0.3, and subsequently display
the DopplerSpectrum property, and change the value of the normalized
standard deviation to 1.1:

>> h = ricianchan(1/9600, 100, 2);
>> h.DopplerSpectrum = doppler.gaussian(0.3)
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h =

ChannelType: 'Rician'
InputSamplePeriod: 1.0417e-004

DopplerSpectrum: [1x1 doppler.gaussian]
MaxDopplerShift: 100

PathDelays: 0
AvgPathGaindB: 0

KFactor: 2
DirectPathDopplerShift: 0

DirectPathInitPhase: 0
NormalizePathGains: 1

StoreHistory: 0
StorePathGains: 0

PathGains: 0.8073 - 0.0769i
ChannelFilterDelay: 0

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

>> h.DopplerSpectrum

ans =

SpectrumType: 'Gaussian'
SigmaGaussian: 0.3000

>> h.DopplerSpectrum.SigmaGaussian = 1.1;

The following example illustrates how to change the default Jakes Doppler
spectrum of a constructed three-path Rayleigh channel object to a vector of
different Doppler spectra, and then change the properties of the Doppler
spectrum of the third path:

>> h = rayleighchan(1/9600, 100, [0 1e-4 2.1e-4]);
>> h.DopplerSpectrum = [doppler.flat doppler.flat doppler.rounded]

h =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0417e-004
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DopplerSpectrum: [3x1 doppler.baseclass]
MaxDopplerShift: 100

PathDelays: [0 1.0000e-004 2.1000e-004]
AvgPathGaindB: [0 0 0]

NormalizePathGains: 1
StoreHistory: 0

StorePathGains: 0
PathGains: [0.4233 - 0.1113i -0.0785 + 0.1667i

-0.2064 + 0.3531i]
ChannelFilterDelay: 3

ResetBeforeFiltering: 1
NumSamplesProcessed: 0

>> h.DopplerSpectrum(3).CoeffRounded = [1 -1.21 0.7];

If the DopplerSpectrum property of a channel object is a vector:

• If the length of the PathDelays vector property is increased, the length
of DopplerSpectrum is automatically increased to match the length of
PathDelays, by appending Jakes Doppler objects.

• If the length of the PathDelays vector property is decreased, the length
of DopplerSpectrum is automatically decreased to match the length of
PathDelays, by removing the last Doppler object(s).

Configure Channel Objects
Before you filter a signal using a channel object, make sure that the properties
of the channel have suitable values for the situation you want to model. This
section offers some guidelines to help you choose realistic values that are
appropriate for your modeling needs. The topics are

• “Choose Realistic Channel Property Values” on page 4-22

• “Configure Channel Objects Based on Simulation Needs” on page 4-24

The syntaxes for viewing and changing values of properties of channel objects
are described in “Specify Fading Channels” on page 4-12.
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Choose Realistic Channel Property Values
Here are some tips for choosing property values that describe realistic
channels:

Path Delays

• By convention, the first delay is typically set to zero. The first delay
corresponds to the first arriving path.

• For indoor environments, path delays after the first are typically between 1
ns and 100 ns (that is, between 1e-9 s and 1e-7 s).

• For outdoor environments, path delays after the first are typically between
100 ns and 10 µs (that is, between 1e-7 s and 1e-5 s). Very large delays
in this range might correspond, for example, to an area surrounded by
mountains.

Note Setting the maximum path delay greater than 100 samples may
generate an ‘Out of memory’ error.

• The ability of a signal to resolve discrete paths is related to its bandwidth.
If the difference between the largest and smallest path delays is less than
about 1% of the symbol period, then the signal experiences the channel
as if it had only one discrete path.

Average Path Gains

• The average path gains in the channel object indicate the average power
gain of each fading path. In practice, an average path gain value is a large
negative dB value. However, computer models typically use average path
gains between -20 dB and 0 dB.

• The dB values in a vector of average path gains often decay roughly
linearly as a function of delay, but the specific delay profile depends on the
propagation environment.

• To ensure that the expected value of the path gains’ total power is 1, you
can normalize path gains via the channel object’s NormalizePathGains
property.
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Maximum Doppler Shifts

• Some wireless applications, such as standard GSM (Global System for
Mobile Communication) systems, prefer to specify Doppler shifts in terms
of the speed of the mobile. If the mobile moves at speed v (m/s), then the
maximum Doppler shift is calculated as follows, where f is the transmission
carrier frequency in Hertz and c is the speed of light (3e8 m/s).

f
vf
cd =

• Based on this formula in terms of the speed of the mobile, a signal from
a moving car on a freeway might experience a maximum Doppler shift of
about 80 Hz, while a signal from a moving pedestrian might experience a
maximum Doppler shift of about 4 Hz. These figures assume a transmission
carrier frequency of 900 MHz.

• A maximum Doppler shift of 0 corresponds to a static channel that comes
from a Rayleigh or Rician distribution.

K-Factor for Rician Fading Channels

• The Rician K-factor specifies the ratio of specular-to-diffuse power for a
direct line-of-sight path. The ratio is expressed linearly, not in dB.

• For Rician fading, the K-factor is typically between 1 and 10.

• A K-factor of 0 corresponds to Rayleigh fading.

Doppler Spectrum Parameters

• See the reference pages for the respective Doppler objects for descriptions
of the parameters and their significance.
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Configure Channel Objects Based on Simulation Needs
Here are some tips for configuring a channel object to customize the filtering
process:

• If your data is partitioned into a series of vectors (that you process within
a loop, for example), you can invoke the filter function multiple times
while automatically saving the channel’s state information for use in a
subsequent invocation. The state information is visible to you in the
channel object’s PathGains and NumSamplesProcessed properties, but also
involves properties that are internal rather than visible.

Note To maintain continuity from one invocation to the next, you must set
the ResetBeforeFiltering property of the channel object to 0.

• If you set the ResetBeforeFiltering property of the channel object to 0
and want the randomness to be repeatable, use the reset function before
filtering any signals to reset both the channel and the state of the internal
random number generator.

• If you want to reset the channel before a filtering operation so that it does
not use any previously stored state information, either use the reset
function or set the ResetBeforeFiltering property of the channel object
to 1. The former method resets the channel object once, while the latter
method causes the filter function to reset the channel object each time
you invoke it.

• If you want to normalize the fading process so that the expected value of
the path gains’ total power is 1, set the NormalizePathGains property
of the channel object to 1.

Use Fading Channels
After you have created a channel object as described in “Specify Fading
Channels” on page 4-12, you can use the filter function to pass a signal
through the channel. The arguments to filter are the channel object and the
signal. At the end of the filtering operation, the channel object retains its state
so that you can find out the final path gains or the total number of samples
that the channel has processed since it was created or reset. If you configured
the channel to avoid resetting its state before each new filtering operation
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(ResetBeforeFiltering is 0), then the retention of state information is
important for maintaining continuity between successive filtering operations.

For an example that illustrates the basic syntax and state retention, see
“Power of a Faded Signal” on page 4-25.

If you want to use the channel visualization tool to plot the characteristics of
a channel object, you need to set the StateHistory property of the channel
object to 1 so that it is populated with plot information. See “Channel
Visualization” on page 6-43 for details.

Rayleigh Fading Channel
The following examples use fading channels:

• “Power of a Faded Signal” on page 4-25

• “Compare Empirical Results to Theoretical Results” on page 4-26

• “Work with Delays” on page 4-28

• “Filter Using a Loop” on page 4-29

• “Store Channel State History” on page 4-31

• “Channel Visualization” on page 6-43

Power of a Faded Signal
The code below plots a faded signal’s power (versus sample number). The
code also illustrates the syntax of the filter and rayleighchan functions
and the state retention of the channel object. Notice from the output that
NumSamplesProcessed equals the number of elements in sig, the signal.

c = rayleighchan(1/10000,100);
sig = 1i*ones(2000,1); % Generate signal
y = filter(c,sig); % Pass signal through channel
c % Display all properties of the channel

% Plot power of faded signal, versus sample number.
plot(20*log10(abs(y)))

The output and the plot follow.
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c =

ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-004

DopplerSpectrum: [1x1 doppler.jakes]
MaxDopplerShift: 100

PathDelays: 0
AvgPathGaindB: 0

NormalizePathGains: 1
StoreHistory: 0

StorePathGains: 0
PathGains: -0.8062 + 0.2648i

ChannelFilterDelay: 0
ResetBeforeFiltering: 1
NumSamplesProcessed: 2000

Compare Empirical Results to Theoretical Results
The code below creates a frequency-flat Rayleigh fading channel object and
uses it to process a DBPSK signal consisting of a single vector. The example
continues by computing the bit error rate of the system for different values
of the signal-to-noise ratio. Notice that the example uses filter before
awgn; this is the recommended sequence to use when you combine fading
with AWGN.
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% Create Rayleigh fading channel object.
chan = rayleighchan(1/10000,100);

% Generate data and apply fading channel.
M = 2; % DBPSK modulation order
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK demodulator

% using the modulator
tx = randi([0 M-1],50000,1); % Generate a random bit stream
dpskSig = modulate(hMod, tx); % DPSK modulate the signal
fadedSig = filter(chan,dpskSig); % Apply the channel effects

% Compute error rate for different values of SNR.
SNR = 0:2:20; % Range of SNR values, in dB.
numSNR = length(SNR);
BER = zeros(1, numSNR);
for n = 1:numSNR

rxSig = awgn(fadedSig,SNR(n)); % Add Gaussian noise
rx = demodulate(hDemod, rxSig); % Demodulate
reset(hDemod);
% Compute error rate.
[nErrors, BER(n)] = biterr(tx,rx);

end

% Compute theoretical performance results, for comparison.
BERtheory = berfading(SNR,'dpsk',M,1);

% Plot BER results.
semilogy(SNR,BERtheory,'b-',SNR,BER,'r*');
legend('Theoretical BER','Empirical BER');
xlabel('SNR (dB)'); ylabel('BER');
title('Binary DPSK over Rayleigh Fading Channel');

With the parameters in the preceding code, the fading is slow enough to be
considered the same across two consecutive samples.

The resulting plot shows that the simulation results are close to the
theoretical results computed by berfading.
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Work with Delays
The value of a channel object’s ChannelFilterDelay property is the number
of samples by which the output of the channel lags the input. If you compare
the input and output data sets directly, you must take the delay into account
by using appropriate truncating or padding operations.

The example illustrates one way to account for the delay before computing
a bit error rate.

M = 2; % DQPSK modulation order
bitRate = 50000;
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK demodulator

% using the modulator

% Create Rayleigh fading channel object.
ch = rayleighchan(1/bitRate,4,[0 0.5/bitRate],[0 -10]);
delay = ch.ChannelFilterDelay;
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tx = randi([0 M-1],50000,1); % Generate random bit stream
dpskSig = modulate(hMod,tx); % DPSK modulate signal
fadedSig = filter(ch,dpskSig); % Apply channel effects
rx = demodulate(hDemod,fadedSig); % Demodulate signal

% Compute bit error rate, taking delay into account.
% Truncate to account for channel delay.
tx_trunc = tx(1:end-delay); rx_trunc = rx(delay+1:end);
[num,ber] = biterr(tx_trunc,rx_trunc) % Bit error rate

The output below shows that the error rate is small. If the example had not
compensated for the channel delay, the error rate would have been close to 1/2.

num =

845

ber =

0.0170

More Information About Working with Delays. The discussion in
“Effect of Delays on Recovery of Convolutionally Interleaved Data Using
MATLAB” on page 3-178 describes two typical ways to compensate for delays.
Although the discussion there is about interleaving operations instead of
channel modeling, the techniques involving truncating and padding data are
equally applicable to channel modeling.

Filter Using a Loop
The section “Configure Channel Objects Based on Simulation Needs” on
page 4-24 indicates how to invoke the filter function multiple times while
maintaining continuity from one invocation to the next. The example below
invokes filter within a loop and uses the small data sets from successive
iterations to create an animated effect. The particular channel in this example
is a Rayleigh fading channel with two discrete major paths.

% Set up parameters.
M = 4; % QPSK modulation order
bitRate = 50000; % Data rate is 50 kb/s
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numTrials = 125; % Number of iterations of loop

% Create Rayleigh fading channel object.
ch = rayleighchan(1/bitRate,4,[0 2e-5],[0 -9]);
% Indicate that FILTER should not reset the channel
% in each iteration below.
ch.ResetBeforeFiltering = 0;

% Initialize scatter plot.
scatterPlot = commscope.ScatterPlot;

% Apply channel in a loop, maintaining continuity.
% Plot only the current data in each iteration.
for n = 1:numTrials

tx = randi([0 M-1],500,1); % Generate random bit stream
pskSig = pskmod(tx,M); % PSK modulate signal
fadedSig = filter(ch, pskSig); % Apply channel effects

% Plot the new data from this iteration.
update(scatterPlot,fadedSig);

end

The scatter plot changes with each iteration of the loop, and the exact content
varies because the fading process involves random numbers. Following are
some snapshots of typical images that the example can produce.

Sample Scatter Plot (a)
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Sample Scatter Plot (b)

Store Channel State History
By default, the PathGains property of a channel object stores the current
complex path gain vector.

Setting the StoreHistory property of a channel to true makes it store the
last N path gain vectors, where N is the length of the vector processed through
the channel. The following code illustrates this property:

h = rayleighchan(1/100000, 130); % Rayleigh channel
tx = randint(10, 1, 2); % Random bit stream
dpskSig = dpskmod(tx, 2); % DPSK signal
h.StoreHistory = true; % Allow states to be stored
y = filter(h, dpskSig); % Run signal through channel
h.PathGains % Display the stored path gains data

This example generates the following output:

ans =

-0.0460 - 1.1873i
-0.0439 - 1.1881i
-0.0418 - 1.1889i
-0.0397 - 1.1897i
-0.0376 - 1.1904i
-0.0355 - 1.1912i
-0.0334 - 1.1920i
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-0.0313 - 1.1928i
-0.0296 - 1.1933i
-0.0278 - 1.1938i

The last element is the current path gain of the channel.

Setting StoreHistory to true significantly slows down the execution speed of
the channel’s filter function.

Use the Channel Visualization Tool
Communications System Toolbox software provides a plotting function that
helps you visualize the characteristics of a fading channel using a GUI. See
“Fading Channels” on page 4-6 for a description of fading channels and objects.

To open the channel visualization tool, type plot(h) at the command line,
where h is a channel object that contains plot information. To populate a
channel object with plot information, run a signal through it after setting
its StoreHistory property to true.

For example, the following code opens the channel visualization tool showing
a three-path Rayleigh channel through which a random signal is passed:

% Three-Path Rayleigh channel
h = rayleighchan(1/100000, 130, [0 1.5e-5 3.2e-5], [0, -3, -3]);
tx = randint(500, 1, 2); % Random bit stream
dpskSig = dpskmod(tx, 2); % DPSK signal
h.StoreHistory = true; % Allow states to be stored
y = filter(h, dpskSig); % Run signal through channel
plot(h); % Call Channel Visualization Tool
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See “Examples of Using the Channel Visualization Tool” on page 4-45 for the
basic usage cases of the channel visualization tool.

This tool can also be accessed from Communications System Toolbox software.

Parts of the GUI. The Visualization pull-down menu allows you to choose
the visualization method. See “Visualization Options” on page 6-45 for details.

The Frame count counter shows the index of the current frame. It shows the
number of frames processed by the filter method since the channel object was
constructed or reset. A frame is a vector of M elements, interpreted to be M
successive samples that are uniformly spaced in time, with a sample period
equal to that specified for the channel.

The Sample index slider control indicates which channel snapshot is
currently being displayed, while the Pause button pauses a running
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animation until you click it again. The slider control and Pause button apply
to all visualizations except the Doppler Spectrum.

The Animation pull-down menu allows you to select how you want to display
the channel snapshots within each frame. Setting this to Slow makes the
tool show channel snapshots in succession, starting at the sample set by the
Sample index slider control. Selecting Medium or Fast makes the tool show
fewer uniformly spaced snapshots, allowing you to go through the channel
snapshots more rapidly. Selecting Interframe only (the default selection)
prevents automatic animation of snapshots within the same frame. The
Animation menu applies to all visualizations except the Doppler Spectrum.

Visualization Options. The channel visualization tool plots the
characteristics of a filter in various ways. Simply choose the visualization
method from the Visualization menu, and the plot updates itself
automatically.

The following visualization methods are currently available:

Impulse Response (IR)

This plot shows the magnitudes of two impulse responses: the multipath
response (infinite bandwidth) and the bandlimited channel response.
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The multipath response is represented by stems, each corresponding to one
multipath component. The component with the smallest delay value is shown
in red, and the component with the largest delay value is shown in blue.
Components with intermediate delay values are shades between red and blue,
becoming more blue for larger delays.

The bandlimited channel response is represented by the green curve. This
response is the result of convolving the multipath impulse response, described
above, with a sinc pulse of period, T, equal to the input signal’s sample period.

The solid green circles represent the channel filter response sampled at rate
1/T. The output of the channel filter is the convolution of the input signal
(sampled at rate 1/T) with this discrete-time FIR channel filter response. For
computational speed, the response is truncated.

The hollow green circles represent sample values not captured in the channel
filter response that is used for processing the input signal.

Note that these impulse responses vary over time. You can use the slider to
visualize how the impulse response changes over time for the current frame
(i.e., input signal vector over time).
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Frequency Response (FR)

This plot shows the magnitude (in dB) of the frequency response of the
multipath channel over the signal bandwidth.

As with the impulse response visualization, you can visualize how this
frequency response changes over time.
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IR Waterfall

This plot shows the evolution of the magnitude impulse response over time.

It shows 10 snapshots of the bandlimited channel impulse response within
the last frame, with the darkest green curve showing the current response.

The time offset is the time of the channel snapshot relative to the current
response time.
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Phasor Trajectory

This plot shows phasors (vectors representing magnitude and phase) for
each multipath component, using the same color code that was used for the
impulse response plot.

The phasors are connected end to end in order of path delay, and the
trajectory of the resultant phasor is plotted as a green line. This resultant
phasor is referred to as the narrowband phasor.

This plot can be used to determine the impact of the multipath channel
on a narrowband signal. A narrowband signal is defined here as having
a sample period much greater than the span of delays of the multipath
channel (alternatively, a signal bandwidth much smaller than the coherence
bandwidth of the channel). Thus, the multipath channel can be represented
by a single complex gain, which is the sum of all the multipath component
gains. When the narrowband phasor trajectory passes through or near the
origin, it corresponds to a deep narrowband fade.
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Multipath Components

This plot shows the magnitudes of the multipath gains over time, using the
same color code as that used for the multipath impulse response.

The triangle marker and vertical dashed line represent the start of the
current frame. If a frame has been processed previously, its multipath gains
may also be displayed.
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Multipath Gain

This plot shows the collective gains for the multipath channel for three signal
bandwidths.

A collective gain is the sum of component magnitudes, as explained in the
following:

• Narrowband (magenta dots): This is the magnitude of the narrowband
phasor in the above trajectory plot. This curve is sometimes referred to
as the narrowband fading envelope.

• Current signal bandwidth (dashed blue line): This is the sum of the
magnitudes of the channel filter impulse response samples (the solid green
dots in the impulse response plot). This curve represents the maximum
signal energy that can be captured using a RAKE receiver. Its value (or
metrics, such as theoretical BER, derived from it) is sometimes referred to
as the matched filter bound.

• Infinite bandwidth (solid red line): This is the sum of the magnitudes of the
multipath component gains.
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In general, the variability of this multipath gain, or of the signal fading,
decreases as signal bandwidth is increased, because multipath components
become more resolvable. If the signal bandwidth curve roughly follows the
narrowband curve, you might describe the signal as narrowband. If the signal
bandwidth curve roughly follows the infinite bandwidth curve, you might
describe the signal as wideband. With the right receiver, a wideband signal
exploits the path diversity inherent in a multipath channel.

Doppler Spectrum

This plot shows up to two Doppler spectra.

The first Doppler spectrum, represented by the dashed red line, is a theoretical
spectrum based on the Doppler filter response used in the multipath channel
model. In the preceding plot, the theoretical Doppler spectrum used for the
multipath channel model is known as the Jakes spectrum. Note that the
plotted Doppler spectrum is normalized to have a total power of 1. This
Doppler spectrum is used to determine a Doppler filter response. For practical
purposes, the Doppler filter response is truncated, which has the effect of
modifying the Doppler spectrum, as shown in the plot.
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The second Doppler spectrum, represented by the blue dots, is determined
by measuring the power spectrum of the multipath fading channel as the
model generates path gains. This measurement is meaningful only after
enough path gains have been generated. The title above the plot reports how
many samples need to be processed through the channel before either the first
Doppler spectrum or an updated spectrum can be plotted.

The Path Number edit box allows you to visualize the Doppler spectrum of
the specified path. The value entered in this box must be a valid path number,
i.e., between 1 and the length of the PathDelays vector property. Once you
change the value of this field, the new Doppler spectrum will appear as soon
as the processing of the current frame has ended.

If the measured Doppler spectrum is a good approximation of the theoretical
Doppler spectrum, the multipath channel model has generated enough fading
gains to yield a reasonable representation of the channel statistics. For
instance, if you want to determine the average BER of a communications link
with a multipath channel and you want a statistically accurate measure of
this average, you may want to ensure that the channel has processed enough
samples to yield at least one Doppler spectrum measurement.

It is possible that a multipath channel (e.g., a Rician channel) can have both
specular (line-of-sight) and diffuse components. In such a case, the Doppler
spectrum would have both a line component and a wideband component.
The channel visualization tool only shows the wideband component for the
Doppler spectrum.

Unlike other visualizations, the Doppler spectrum visualization does
not support animation. Because there is no intraframe data to plot, the
visualization tool only updates the channel statistics at the end of each frame
and therefore cannot pause in the middle of a frame. If you switch to the
Doppler spectrum visualization from a different visualization that is in pause
mode, the Pause button is subsequently disabled. Disabling pause avoids
interaction problems between the Doppler spectrum visualization and other
animation-style visualizations.
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Scattering Function

This plot shows the Doppler spectra of each path versus the path delays,
using the same color code as that used for the multipath impulse response.

The principle of operation of the Scattering Function plot is similar to that of
the Doppler Spectrum plot. The main difference is that the Doppler spectra
on this plot are not normalized as they are on the Doppler Spectrum plot, in
order to better visualize the power delay profile.

Composite Plots

Several composite plots are also available. These are chosen by selecting the
following from the Visualization pull-down menu:

• IR and FR for impulse response and frequency response plots.

• Components and Gain for multipath components and multipath gain plots.

• Components and IR for multipath components and impulse response plots.
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• Components, IR, and Phasor for multipath components, impulse
response, and phasor trajectory plots.
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Examples of Using the Channel Visualization Tool. Here are two
examples that show how you might interact with the GUI.

Visualize Samples Within a Frame

This example shows how to visualize samples within a frame through
animation. The following lines of code create a Rayleigh channel and open
the channel visualization tool:

% Create a fast fading channel
h = rayleighchan(1e-4, 100, [0 1.1e-4], [0 0]);

h.StoreHistory = 1; % Allow states to be stored
y = filter(h, ones(100,1)); % Process samples through channel
plot(h); % Open channel visualization tool

After selecting a visualization option and a speed in the Animation menu,
move the Sample index slider control all the way to the left and click
Resume. The slider control moves by itself during animation. The sample
index increments automatically to show which snapshot you are visualizing.

You can also move the slider control and glance through the samples of the
frame as you like.

Animate Snapshots Across Frames

This example shows how to animate snapshots across frames. The following
lines of code call the filter and plot methods within a loop to accomplish this:

Ts = 1e-4; % Sample period (s)
fd = 100; % Maximum Doppler shift

% Path delay and gains
tau = [0.1 1.2 2.3 6.2 11.3]*Ts;
PdB = linspace(0, -10, length(tau)) - length(tau)/20;

nTrials = 10000; % Number of trials
N = 100; % Number of samples per frame
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h = rayleighchan(Ts, fd, tau, PdB); % Create channel object
h.NormalizePathGains = false;
h.ResetBeforeFiltering = false;
h.StoreHistory = 1;
h % Show channel object

% Channel fading simulation
for trial = 1:nTrials

x = randint(10000, 1, 4);
dpskSig = dpskmod(x, 4);
y = filter(h, dpskSig);
plot(h);
% The line below returns control to the command line in case
% the GUI is closed while this program is still running
if isempty(findobj('name', 'Multipath Channel')), break; end;

end

While the animation is running, you can move the slider control and change
the sample index (which also makes the animation pause). After clicking
Resume, the plot continues to animate.

The property ResetBeforeFiltering needs to be set to false so that the state
information in the channel is not reset after the processing of each frame.

Rician Fading Channel

Quasi-Static Channel Modeling
Typically, a path gain in a fading channel changes insignificantly over a
period of 1/(100fd) seconds, where fd is the maximum Doppler shift. Because
this period corresponds to a very large number of bits in many modern
wireless data applications, assessing performance over a statistically
significant range of fading entails simulating a prohibitively large amount
of data. Quasi-static channel modeling provides a more tractable approach,
which you can implement using these steps:

1 Generate a random channel realization using a maximum Doppler shift
of 0.
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2 Process some large number of bits.

3 Compute error statistics.

4 Repeat these steps many times to produce a distribution of the performance
metric.

The example below illustrates the quasi-static channel modeling approach.

M = 4; % DQPSK modulation order
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK demodulator

% using the modulator
numBits = 10000; % Each trial uses 10000 bits.
numTrials = 20; % Number of BER computations

% Note: In reality, numTrials would be a large number
% to get an accurate estimate of outage probabilities
% or packet error rate.
% Use 20 here just to make the example run more quickly.

% Create Rician channel object.
chan = ricianchan; % Static Rician channel
chan.KFactor = 3; % Rician K-factor
% Because chan.ResetBeforeFiltering is 1 by default,
% FILTER resets the channel in each trial below.

% Compute error rate once for each independent trial.
for n = 1:numTrials

tx = randi([0 M-1],numBits,1); % Generate random bit stream
dpskSig = modulate(hMod, tx); % DPSK modulate signal
fadedSig = filter(chan, dpskSig); % Apply channel effects
rxSig = awgn(fadedSig,20); % Add Gaussian noise.
rx = demodulate(hDemod,rxSig); % Demodulate.

% Compute number of symbol errors.
% Ignore first sample because of DPSK initial condition.
nErrors(n) = symerr(tx(2:end),rx(2:end))

end
per = mean(nErrors > 0) % Proportion of packets that had errors
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While the example runs, the Command Window displays the growing list of
symbol error counts in the vector nErrors. It also displays the packet error
rate at the end. The sample output below shows a final value of nErrors and
omits intermediate values. Your results might vary because of randomness
in the example.

nErrors =

Columns 1 through 9

0 0 0 0 0 0 0 0 0

Columns 10 through 18

0 0 0 0 7 0 0 0 0

Columns 19 through 20

0 216

per =

0.1000

More About the Quasi-Static Technique. As an example to show how the
quasi-static channel modeling approach can save computation, consider a
wireless local area network (LAN) in which the carrier frequency is 2.4 GHz,
mobile speed is 1 m/s, and bit rate is 10 Mb/s. The following expression shows
that the channel changes insignificantly over 12,500 bits:
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A traditional Monte Carlo approach for computing the error rate of this system
would entail simulating thousands of times the number of bits shown above,
perhaps tens of millions of bits. By contrast, a quasi-static channel modeling
approach would simulate a few packets at each of about 100 locations to
arrive at a spatial distribution of error rates. From this distribution one could
determine, for example, how reliable the communication link is for a random
location within the indoor space. If each simulation contains 5,000 bits, 100
simulations would process half a million bits in total. This is substantially
fewer bits compared to the traditional Monte Carlo approach.

Additional Examples Using Fading Channels
The following models include the use of fading channels:

• Rayleigh Fading Channel, which illustrates the channel’s effect on a QPSK
modulated signal

• Communications Link with Adaptive Equalization

• IEEE 802.11a WLAN Physical Layer

• cdma2000 Physical Layer

• Defense Communications: US MIL-STD-188-110B

• WCDMA End-to-End Physical Layer
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MIMO Channel
The Communications System Toolbox software provides a multiple-input
multiple-output (MIMO) fading channel object, allowing you to model the
characteristics and performance of a communications system with various
transmitter and receiver configurations. For more information, see the
mimochan Help page.

The following demos illustrate MIMO fading channel techniques:

IEEE 802.11n Channel Models

IEEE 802.16 Channel Models
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RF Impairments

In this section...

“Illustrate RF Impairments That Distort a Signal” on page 4-51

“Phase/Frequency Offsets and Phase Noise” on page 4-54

“Receiver Thermal Noise and Free Space Path Loss” on page 4-55

“Nonlinearity and I/Q Imbalance” on page 4-55

“Apply a Nonlinear Distortion to the Input Signal” on page 4-55

“Illustrate How RF Impairments Blocks Distort a Signal” on page 6-40

Illustrate RF Impairments That Distort a Signal
This section presents scatter plots that illustrate how blocks in the RF
Impairments library distort a signal modulated by 16-ary quadrature
amplitude modulation (QAM). The usual 16-ary QAM constellation without
distortion is shown in the following figure.

The scatter plots illustrate the effects of the following blocks:
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• “I/Q Imbalance Block” on page 4-52

• “Phase/Frequency Offset Block” on page 4-52

• “Phase Noise Block” on page 4-53

As the scatter plots show, the first two blocks distort both the magnitude and
angle of points in the constellation, while the last two alter just the angle.

You can create these scatter plots with models similar to the following, which
produces the scatter plot for the Memoryless Nonlinearity block:

16-ary QAM Model

The model uses the Rectangular QAM Modulator Baseband block, from AM
in the Digital Baseband Modulation sublibrary of the Modulation library.
You control the power of the block’s output signal with the Normalization
method parameter.

I/Q Imbalance Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model on page 4-52 with the I/Q
Imbalance block. Set the block’s I/Q amplitude imbalance (dB) parameter
to 10 and the I/Q phase imbalance (deg) parameter to 30.

For more examples of scatter plots produced using this block, see the reference
page for the I/Q Imbalance block.

Phase/Frequency Offset Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model on page 4-52 with the
Phase/Frequency Offset block. Set the block’s Frequency offset (Hz)
parameter to 0 and the Phase offset (deg) parameter to 70.
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The Frequency offset (Hz) parameter adds a constant to the phase of the
signal. The scatter plot corresponds to the standard constellation rotated by
a fixed angle of 70 degrees.

The Frequency offset (Hz) parameter determines the rate of change of the
signal’s phase. In this example, Frequency offset (Hz) is set to 0, so the
scatter plot always falls on the grid shown in the preceding figure. If you set
Frequency offset (Hz) to a positive number, the points on the scatter plot
fall on a rotating grid, corresponding to the standard constellation, which
revolves at a constant rate in the counterclockwise direction. For an example,
see the reference page for the Phase/Frequency Offset block.

Phase Noise Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model on page 4-52 with the Phase
Noise block. Set the Phase noise level (dBc/Hz) parameter to -60 and the
Frequency offset (Hz) parameter to 100.
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The phase noise adds a random error to the signal’s phase, so that the points in
the scatter plot are spread in a radial pattern around the constellation points.

Phase/Frequency Offsets and Phase Noise
The RF Impairments library contains two blocks that simulate
phase/frequency offsets and phase noise:

• The Phase/Frequency Offset block applies phase and frequency offsets
to a signal.

• The Phase Noise block applies phase noise to a signal.

The Phase/Frequency Offset block and the Phase Noise block alter only the
phase and frequency of the signal.
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Receiver Thermal Noise and Free Space Path Loss
The RF Impairments Library contains two blocks that simulate signal
impairments due to thermal noise and signal attenuation due to the distance
from the transmitter to the receiver:

• The Receiver Thermal Noise block simulates the effects of thermal noise on
a complex baseband signal.

• The Free Space Path Loss block simulates the loss of signal power due to
the distance from the transmitter and signal frequency.

Nonlinearity and I/Q Imbalance
The following two blocks model signal impairments due to nonlinear devices
or imbalances between the in-phase and quadrature components of a
modulated signal:

• The Memoryless Nonlinearity block models the AM-to-AM and AM-to-PM
distortion in nonlinear amplifiers.

• The I/Q Imbalance block models imbalances between the in-phase and
quadrature components of a signal caused by differences in the physical
channels carrying the separate components.

These blocks distort both the phase and amplitude of the signal.

Apply a Nonlinear Distortion to the Input Signal
The Memoryless Nonlinearity block applies a nonlinear distortion to the input
signal. This distortion models the AM-to-AM and AM-to-PM conversions
in nonlinear amplifiers. The block provides several methods, which you
specify by the Method parameter, for modeling the nonlinear characteristics
of amplifiers:

• Cubic polynomial

• Hyperbolic tangent

• Saleh model

• Ghorbani model

• Rapp model
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In the model shown in the preceding figure, the Method parameter is set
to Ghorbani model. The following figure shows the scatter plot the model
generates.

For another example of a scatter plot produced using this block, see the
reference page for the Memoryless Nonlinearity block.

Simulate RF Impairments to a DQPSK Signal
The model shown in the following figure simulates RF impairments to a signal
modulated by differential quaternary phase shift keying (DQPSK).
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You can open this model by typing doc_receiverimpairments_dqpsk at the
MATLAB command line.

Overview of the Model
The model does the following:
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• Modulates a random signal using DQPSK modulation.

• Applies impairments to the signal using the blocks from the RF
Impairments library.

• Forks the signal into two paths, and processes one path with an automatic
gain control (AGC) to compensate for the free space path loss and the I/Q
imbalance.

• Displays the trajectory of the signal with AGC and the trajectory of the
signal without AGC.

• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of
the signals with and without AGC, as shown in the following figure.

Signal With (Left) and Without (Right) AGC

The trajectory of the signal with AGC more closely matches the undistorted
trajectory for DQPSK, shown in the following figure, than does than the signal
without AGC. Consequently, the error rate for the signal with AGC is much
lower than the error rate for the signal without AGC.
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In this example, the error rate for the demodulated signal without AGC
is primarily caused by free space path loss and I/Q imbalance. The QPSK
modulation minimizes the effects of the other impairments.
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5

Measurements

• “Bit Error Rate (BER)” on page 5-2

• “Error Vector Magnitude (EVM)” on page 5-117

• “Modulation Error Ratio (MER)” on page 5-122

• “Adjacent Channel Power Ratio (ACPR) ” on page 5-123

• “Complementary Cumulative Distribution Function CCDF” on page 5-133



5 Measurements

Bit Error Rate (BER)

In this section...

“Theoretical Results” on page 5-2

“BERTool” on page 5-25

“Error Rate Test Console” on page 5-77

Theoretical Results

Common Notation
The following notation is used throughout this Appendix:

Quantity or Operation Notation

Size of modulation constellation
M

Number of bits per symbol
k M= log2

Energy per bit-to-noise
power-spectral-density ratio E

N
b

0

Energy per symbol-to-noise
power-spectral-density ratio E

N
k

E
N

s b

0 0
=

Bit error rate (BER)
Pb

Symbol error rate (SER)
Ps
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Bit Error Rate (BER)

Quantity or Operation Notation

Real part

Re ⋅[ ]

Largest integer smaller than

⋅⎢⎣ ⎥⎦
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5 Measurements

The following mathematical functions are used:

Function Mathematical Expression

Q function

Q x t dt
x

( ) exp( / )= −
∞

∫1
2

22

π

Marcum Q function

Q a b t
t a

I at dt
b

( , ) exp ( )= − +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∞

∫
2 2

02

Modified Bessel function of the first
kind of order ν

I z
z

k k

k

k
ν

υ

ν
( )

/
! ( )

=
( )

+ +

+

=

∞

∑ 2
1

2

0 Γ

where

Γ( )x e t dtt x= − −
∞

∫ 1

0

is the gamma function.

Confluent hypergeometric function

1 1
0

F a c x
a
c

x
k

k

k

k

k

( , ; )
( )
( ) !

=
=

∞

∑
where the Pochhammer symbol,
( )λ k , is defined as ( )λ 0 1= ,

( ) ( )( ) ( )λ λ λ λ λk k= + + + −1 2 1 .
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Bit Error Rate (BER)

The following acronyms are used:

Acronym Definition

M-PSK M-ary phase-shift keying

DE-M-PSK Differentially encoded M-ary
phase-shift keying

BPSK Binary phase-shift keying

DE-BPSK Differentially encoded binary
phase-shift keying

QPSK Quaternary phase-shift keying

DE-QPSK Differentially encoded quaternary
phase-shift keying

OQPSK Offset quaternary phase-shift keying

DE-OQPSK Differentially encoded offset
quaternary phase-shift keying

M-DPSK M-ary differential phase-shift keying

M-PAM M-ary pulse amplitude modulation

M-QAM M-ary quadrature amplitude
modulation

M-FSK M-ary frequency-shift keying

MSK Minimum shift keying

M-CPFSK M-ary continuous-phase
frequency-shift keying
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5 Measurements

Analytical Expressions Used in berawgn

• “M-PSK” on page 5-6

• “DE-M-PSK” on page 5-7

• “OQPSK” on page 5-8

• “DE-OQPSK” on page 5-8

• “M-DPSK” on page 5-8

• “M-PAM” on page 5-8

• “M-QAM” on page 5-9

• “Orthogonal M-FSK with Coherent Detection” on page 5-10

• “Nonorthogonal 2-FSK with Coherent Detection” on page 5-10

• “Orthogonal M-FSK with Noncoherent Detection” on page 5-12

• “Nonorthogonal 2-FSK with Noncoherent Detection” on page 5-12

• “Precoded MSK with Coherent Detection” on page 5-12

• “Differentially Encoded MSK with Coherent Detection” on page 5-12

• “MSK with Noncoherent Detection (Optimum Block-by-Block)” on page 5-12

• “CPFSK Coherent Detection (Optimum Block-by-Block)” on page 5-13

M-PSK. From equation 8.22 in :

P
kE
N

M
ds

b
M M

= −
[ ]⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

∫1

0

2

2
0

1

π
π

θ
θ

π
exp

sin /

sin

( ) /

The following expression is very close, but not strictly equal, to the exact
BER (from and equation 8.29 from):

P
k

w Pb i i
i

M
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑1

1

2
( )’

/
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Bit Error Rate (BER)

where w w wi i M i
’ = + − , w wM M/

’
/2 2= , wi is the Hamming weight of bits

assigned to symbol i, and

P
kE
N

i M
di

b
i M

= −
−[ ]⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− −
1
2

2 1

0

2

2
0

1 2 1

π
π

θ
θ

π
exp

sin ( ) /

sin

( ( ) / ))

( ( ) /

exp
sin ( ) /

sin

∫

− −
+[ ]⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− +
1
2

2 1

0

2

2
0

1 2 1

π
π

θ
θ

π kE
N

i M
db

i MM)

∫

Special case of M = 2 , e.g., BPSK (equation 5.2-57 from ):

P P Q
E

Ns b
b= =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

0

Special case of M = 4 , e.g., QPSK (equations 5.2-59 and 5.2-62 from ):

P Q
E

N
Q

E
N

P Q
E

N

s
b b

b
b

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎛

⎝
⎜⎜

⎞

2
2

1
1
2

2

2

0 0

0 ⎠⎠
⎟⎟

DE-M-PSK. M = 2 , e.g., DE-BPSK (equation 8.36 from ):

P P Q
E

N
Q

E
Ns b

b b= =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟2

2
2

2

0

2

0

M = 4 , e.g., DE-QPSK (equation 8.38 from ):

P Q
E

N
Q

E
N

Q
E

N
Q

E
s

b b b=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −4

2
8

2
8

2
4

2

0

2

0

3

0

4 bb

N0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

From equation 5 in :
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P Q
E

N
Q

E
Nb

b b=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2

1
2

0 0

OQPSK. Same BER/SER as QPSK .

DE-OQPSK. Same BER/SER as DE-QPSK .

M-DPSK. From equation 8.84 in :

P
M kE N M

M
ds

b=
− −( )

−
sin( / ) exp ( / )( cos( / ) cos )

cos( / ) cos
π
π

π θ
π θ2

1

1
0 θθ

π

π

−
∫
/

/

2

2

The following expression is very close, but not strictly equal, to the exact BER :

P
k

w Ab i i
i

M
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑1

1

2
( )’

/

where w w wi i M i
’ = + − , w wM M/

’
/2 2= , wi is the Hamming weight of bits

assigned to symbol i, and

A F i
M

F i
M

F
kE N

i

b

= +( )⎛
⎝⎜

⎞
⎠⎟
− −( )⎛

⎝⎜
⎞
⎠⎟

= −
−

2 1 2 1

4

10

π π

ψ ψ
π

( )
sin exp / ( −−( )

−
−
∫

cos cos )

cos cos
/

/ ψ
ψ

π

π t

t
dt

1
2

2

Special case of M = 2 (equation 8.85 from ):

P
E
Nb

b= −
⎛

⎝
⎜

⎞

⎠
⎟

1
2 0

exp

M-PAM. From equations 8.3 and 8.7 in , and equation 5.2-46 in :
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P
M

M
Q

M

kE
Ns

b= −⎛
⎝⎜

⎞
⎠⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟2

1 6

12
0

From :

P
M M

i
M

Q

b

i
M k

k
k

= ×

− − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−⎢

⎣
⎢

⎥

⎦
⎥ −

−

2

1 2
2 1

2

2

2
1

1
1

log

( ) (( )
log( )lo

2 1
6

1
2

2
00

1 2 1

1
i

M

M

E
N

b

i

M

k

k

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪=

− −

=

−

∑
gg2 M

∑

M-QAM. For square M-QAM, k M= log2 is even (equation 8.10 from , and
equations 5.2-78 and 5.2-79 from ):

P
M

M
Q

M
kE
N

M

M
Q

M
kE
Ns

b b= −
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
4

1 3
1

4
1 3

10

2
2

0
⎟⎟⎟

From :

P
M M

i
M

Q

b

i
M k

k
k

=

× − − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−⎢

⎣
⎢

⎥

⎦
⎥ −

−

2

1 2
2 1

2

2

2
1

1
1

log

( ) (( )
log
( )

( )
2 1

6
2 1

2

00

1 2 1

1
i

M
M

E
N

b

i

M

k

k

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪=

− −

=

−

∑
llog2 M

∑

For rectangular (non-square) M-QAM, k M= log2 is odd, M I J= × ,

I
k

=
−

2
1

2 , and J
k

=
+

2
1

2 :
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P
IJ I J

M

Q
IJ

I J

E
N M

IJ I J

s

b

= − −

×
+ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − + − −

4 2 2

6

2

4
12

2 2
0

log ( )

( )
( )QQ

IJ

I J

E
N

b2 2
2 2

0

6

2

log ( )

( )+ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

From :

P
IJ

P k P lb I
k

I

J
l

J
= +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= =
∑ ∑1

2 1 1

2 2

log ( )
( ) ( )

log log

where

P k
I

i
I

Q iI

i
I k

k
k

( ) ( ) (= − − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−⎢

⎣
⎢

⎥

⎦
⎥ −

−2
1 2

2 1
2

2

2
1

1
1

++
+ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪=

− −−

∑ 1
6

2
2

2 2
00

1 2 1
)

log ( )( ) IJ

I J

E
N

b

i

Ik

and

P k
J

j
J

Q jJ

j
J l

l
l

( ) ( ) (= − − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−⎢

⎣
⎢

⎥

⎦
⎥ −

−2
1 2

2 1
2

2

2
1

1
1

++
+ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪=

− −−

∑ 1
6

2
2

2 2
00

1 2 1
)

log ( )( ) IJ

I J

E
N

b

j

Jl

Orthogonal M-FSK with Coherent Detection. From equation 8.40 in
and equation 5.2-21 in :

P Q q
kE
N

q
dqs

b
M

= − − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

−∞

∞

∫1
2 1

2 20

1 2

π
exp

PP Pb

k

k s=
−

−2

2 1

1

Nonorthogonal 2-FSK with Coherent Detection. For M = 2 (from
equation 5.2-21 in and equation 8.44 in ):
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P P Q
E

Ns b
b= =

− [ ]⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

( Re )1

0

ρ

ρ is the complex correlation coefficient:

ρ = ∫1
2 1 2

0
E

s t s t dt
b

Tb

 ( ) ( )*

where s t1 ( ) and s t2 ( ) are complex lowpass signals, and

E s t dt s t dtb

T Tb b

= =∫ ∫1
2

1
21

2

0
2

2

0

 ( ) ( )

For example:

 s t
E
T

e s t
E
T

eb

b

j f t b

b

j f t
1

2
2

22 2
1 2( ) , ( )= =π π 

ρ π π π= =− −∫1
2

2 2 12 2

0

2

0

1 2 1 2

E
E
T

e
E
T

e dt
T

e dt
b

b

b

j f t b

b

j f t
T

b

j f f t
Tb b

( )∫∫

=
sin( )π

π
πΔ

Δ
ΔfT

fT
eb

b

j ft

where Δf f f= −1 2 .

    Re Re
sin( ) sin( )

cosρ
π

π
π

π
π[ ] = ⎡

⎣
⎢

⎤

⎦
⎥ =

Δ
Δ

Δ
Δ

ΔfT
fT

e
fT

fT
b

b

j ft b

b
(( )

sin( )

( sin( ) /( ))

π
π

π

π π

Δ
Δ

Δ

Δ Δ

fT
fT

fT

P Q
E fT fT

N

b
b

b

b
b b b

=

⇒ =
−

2
2

1 2 2

00

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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(from equation 8.44 in , where h fTb= Δ )

Orthogonal M-FSK with Noncoherent Detection. From equation 5.4-46
in and equation 8.66 in :

P
M

m m
m

m
kE
N

P
M

M

s
m b

m

M

b

= −
−⎛

⎝
⎜

⎞

⎠
⎟ +

−
+

⎡

⎣
⎢

⎤

⎦
⎥

=
−

+

=

−

∑ ( ) exp1
1 1

1 1

1
2

1

01

1

11
Ps

Nonorthogonal 2-FSK with Noncoherent Detection. For M = 2 (from
equation 5.4-53 in and equation 8.69 in ):

P P Q a b
a b

I abs b= = − − +⎛
⎝⎜

⎞
⎠⎟

( , ) exp ( )
1
2 2 0

where

a
E
N

b
E
N

b b= − − = + −
2

1 1
2

1 1
0

2

0

2( ), ( )ρ ρ  

Precoded MSK with Coherent Detection. Same BER/SER as BPSK.

Differentially Encoded MSK with Coherent Detection. Same BER/SER
as DE-BPSK.

MSK with Noncoherent Detection (Optimum Block-by-Block). Upper
bound (from equations 10.166 and 10.164 in ):

P P

Q b a Q a b Q b a Q a b

s b=

≤ − ( ) + ( )⎡
⎣

⎤
⎦ + − ( ) + ( )⎡

⎣
⎤
⎦ +

1
2

1
1
4

11 1 1 1 4 4 4 4, , , ,
11
2

0e

E
N

b−

where
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a
E
N

b
E
N

a
E
N

b b

b

1
0

2

1
0

2

4
0

1
3 4

4
1

3 4
4

1

= − −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= + −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −

/
,

/π π

11 4 1 1 42
4

0

2−( ) = + −( )/ , /π πb
E
N

b

CPFSK Coherent Detection (Optimum Block-by-Block). Lower bound
(from equation 5.3-17 in ):

P K Q
E
Ns

b>
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟δ δ

min min
0

2

Upper bound:

δmin min ( )2

1 1
2 1 2> −( ){ }

≤ ≤ −i M
i ihsinc

where h is the modulation index, and Kδmin
is the number of paths having

the minimum distance.

P
P
kb
s≅

Analytical Expressions Used in berfading

• “Notation” on page 5-14

• “M-PSK with MRC” on page 5-15

• “DE-M-PSK with MRC” on page 5-16

• “M-PAM with MRC” on page 5-16

• “M-QAM with MRC” on page 5-16

• “M-DPSK with Postdetection EGC” on page 5-18

• “Orthogonal 2-FSK, Coherent Detection with MRC” on page 5-19

• “Nonorthogonal 2-FSK, Coherent Detection with MRC” on page 5-19

5-13



5 Measurements

• “Orthogonal M-FSK, Noncoherent Detection with EGC” on page 5-19

• “Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity” on page
5-20

Notation. The following notation is used for the expressions found in
berfading.

Value Notation

Power of the fading amplitude r

Ω = ⎡
⎣

⎤
⎦E r2 , where E ⋅[ ] denotes

statistical expectation

Number of diversity branches
L

SNR per symbol per branch

γl l
s

l
bE

N
L

kE
N

L=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟Ω Ω

0 0
/ /

For identically-distributed diversity
branches:

γ =
⎛

⎝
⎜

⎞

⎠
⎟Ω

kE
N

Lb

0
/

Moment generating functions for
each diversity branch

Rayleigh fading:

M s
sl

l
γ γ
( ) =

−
1

1

Rician fading:

M s
K

K s
e

l

l

l

l

Ks
K s

γ

γ
γ

γ
( ) = +

+ −
+ −

⎡

⎣
⎢

⎤

⎦
⎥1

1
1( )

where K is the ratio of energy in the
specular component to the energy
in the diffuse component (linear
scale).For identically-distributed
diversity branches:

M s M s
lγ γ( ) = ( ) for all l.5-14
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The following acronyms are used:

Acronym Definition

MRC maximal-ratio combining

EGC equal-gain combining

M-PSK with MRC. From equation 9.15 in :

P M
M

ds
l

LM M

l
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

−

∏∫1 2

2
10

1

π
π
θ

θγ

π
sin ( / )

sin

( ) /

From and :

P
k

w Pb i i
i

M
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑1

1

2
( )’

/

where w w wi i M i
’ = + − , w wM M/

’
/2 2= , wi is the Hamming weight of bits

assigned to symbol i, and

P M
i
M

di
l

Li M

l
= − −⎛

⎝
⎜

⎞
⎠
⎟

−

=

− −

∏∫1
2

1 2 1

1

2
2

10

1 2 1

π θ
π θγ

π

sin
sin

( )
( ( ) / )

22
1 2 1
2

2

10

1 2 1

π θ
π θγ

π
M

i
M

d
l

l

Li M

− +⎛
⎝
⎜

⎞
⎠
⎟

=

− +

∏∫ sin
sin

( )
( ( ) / )

For the special case of Rayleigh fading with M = 2 (from equations C-18,
C-21, and Table C-1 in ):

P
i
ib

i

L i

= −
⎛

⎝
⎜

⎞

⎠
⎟

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=

−

∑1
2

1
2 1

40

1 2
μ μ
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where

μ γ
γ

=
+1

If L = 1 :

Pb = −
+

⎡

⎣
⎢

⎤

⎦
⎥

1
2

1
1

γ
γ

DE-M-PSK with MRC. For M = 2 (from equations 8.37 and 9.8-9.11 in ):

P P M d Ms b
l

L

l
l l

= = −⎛
⎝
⎜

⎞
⎠
⎟ − −⎛

⎝
⎜

⎞
⎠
⎟

= =
∏∫2 1 2 1

2
10

2

2
1π θ

θ
π θ

γ

π

γ
sin sin

/ LL
d∏∫ θ

π

0

4/

M-PAM with MRC. From equation 9.19 in :

P
M
M

M
M

ds
l

L

l
= − − −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∏∫2 1 3 12

2
10

2
( ) /( )

sin

/

π θ
θγ

π

From and :

P
M M

i
M

b

i
M k

k
k

=

× − − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟

−⎢

⎣
⎢

⎥

⎦
⎥ −

−

2

1 2
2 1

2

2

2
1

1
1

π log

( ) ⎟⎟ − + −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪==

∏∫ M
i M

d
l

l

L

i
γ

π

θ
θ( ) /( )

sin

/
2 1 3 12 2

2
10

2

00

1 2 1

1

2 ( )log − −

=

−

∑∑
k M

k

M

M-QAM with MRC. For square M-QAM, k M= log2 is even (equation 9.21
in ):
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P
M

M
M

ds
l

L

l
= −⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝
⎜

⎞
⎠
⎟

− −

=
∏∫4

1
1 3 2 1

4
1

1

2
10

2

π θ
θ

π

γ

π
/( ( ))

sin

/

MM
M

M
d

l

l

L⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝
⎜

⎞
⎠
⎟

=
∏∫

2

2
10

4
3 2 1

γ

π

θ
θ/( ( ))

sin

/

From and :

P
M M

i
M

b

i
M k

k
k

=

× − − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟

−⎢

⎣
⎢

⎥

⎦
⎥ −

−

2

1 2
2 1

2

2

2
1

1
1

π log

( ) ⎟⎟ − + −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪=

∏∫ M
i M

d
l

l

L

γ

π

θ
θ( ) /( ( ))

sin

/
2 1 3 2 12

2
10

2

ii

M

k

M k

=

− −

=

−

∑∑
0

1 2 1

1

2 ( )log

For rectangular (nonsquare) M-QAM, k M= log2 is odd, M I J= × , I
k

=
−

2
1

2 ,

J
k

=
+

2
1

2 , γl l
bIJ

E
N

= Ω log ( )2
0
, and

P
IJ I J

M
M

I J
d

M

s
l

L

l
= − − − + −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

=
∏∫4 2 2 3 2

4

2 2

2
10

2

π θ
θ

π

γ

π
/( )

sin

/

(( )
/( )

sin

/

1
3 22 2

2
10

4

+ − − − + −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∏∫IJ I J M

I J
d

l

l

L

γ

π

θ
θ

From and :
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P
IJ

P k P l

P k
I

b I
k

I

J
l

J

I

= +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

= =
∑ ∑1

2

2 1 1

2 2

log ( )
( ) ( )

( )

log log

π
(( )

( )− − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ − +

−⎢

⎣
⎢

⎥

⎦
⎥ −

−
1 2

2 1
2

2 1
2

1
1 2

1i
I k

k
k

l

i
I

M
i

γ
33 22 2

2
10

2

0

1 2 /( )

sin

/( ) I J
d

l

L

i

Ik

+ −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪==

−

∏∫
−

θ
θ

π−−

⎢

⎣
⎢

⎥

⎦
⎥ −

−

∑

= − − +
⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟

−

1

2
1

12
1 2

2 1
2

1

P k
J

j
JJ

j
J l

l
l

( ) ( )
π ⎟⎟ − + + −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
=
∏∫ M

j I J
d

l

l

L

γ

π

θ
θ( ) /( )

sin

/
2 1 3 22 2 2

2
10

2

⎪⎪=

− −−

∑
j

Jl

0

1 2 1( )

M-DPSK with Postdetection EGC. From equation 8.165 in :

P
M

M
M M ds

l

L

l
=

−[ ]
− −[ ]( )

=
∏sin( / )

cos( / ) cos
cos( / ) cos

π
π π θ

π θγ2
1

1
1

1

θθ
π

π

−
∫
/

/

2

2

From and :

P
k

w Ab i i
i

M
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑1

1

2
( )’

/

where w w wi i M i
’ = + − , w wM M/

’
/2 2= , wi is the Hamming weight of bits

assigned to symbol i, and

A F i
M

F i
M

F
t

i = +( )⎛
⎝⎜

⎞
⎠⎟
− −( )⎛

⎝⎜
⎞
⎠⎟

= −
−(

2 1 2 1

4
1

1

π π

ψ ψ
π ψ

( )
sin

cos cos ))
− −( )( )

=−
∏∫ M t dt

l

l

L

γ
π

π
ψ1

12

2

cos cos
/

/

For the special case of Rayleigh fading with M = 2 , and L = 1 (equation
8.173 from ):

Pb =
+
1

2 1( )γ
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Orthogonal 2-FSK, Coherent Detection with MRC. From equation 9.11 in
:

P P M ds b
l

L

l
= = −⎛

⎝
⎜

⎞
⎠
⎟

=
∏∫1 1 2

2
10

2

π θ
θγ

π
/

sin

/

For the special case of Rayleigh fading (equations 14.4-15 and 14.4-21 in ):

P P
L k

ks b L

L

k
k

L
= = −

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− +⎛

⎝
⎜

⎞

⎠
⎟ +

+
⎛

⎝
⎜⎜

⎞

⎠=

−

∑1

2
1

2

1 1

2
1

20

1γ
γ

γ
γ ⎟⎟⎟

k

Nonorthogonal 2-FSK, Coherent Detection with MRC. Equations 9.11
and 8.44 in :

P P M ds b
l

L

l
= = −

− [ ]⎛

⎝
⎜

⎞

⎠
⎟

=
∏∫1 1 2

2
10

2

π
ρ

θ
θγ

π ( Re ) /

sin

/

For the special case of Rayleigh fading with L = 1 (equation 20 in and
equation 8.130 in ):

P Ps b= = − −
+ −

⎡

⎣
⎢

⎤

⎦
⎥

1
2

1
1

2 1
γ ρ
γ ρ
( Re[ ])

( Re[ ])

Orthogonal M-FSK, Noncoherent Detection with EGC. Rayleigh fading
(equation 14.4-47 in ):

P
L

U e e
U
k

dUs L
L

U
U

k

k

L M

= −
+( ) −( )

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
−

+ −

=

− −

∑1
1

1 1
11 1

0

1 1

0 γ
γ

! !

∞∞

∫

=
−

P
M

M
Pb s

1
2 1

Rician fading (equation 41 in ):
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P
e

r

M
r

L
s

r LK

r
L

r

M

nr
r r

= −

+ +( )
−⎛

⎝
⎜

⎞

⎠
⎟

+ − +

=

−

∑ ( )

( )

(/( )1

1 1

11 1

1

1 γ γ

γ
β Γ ++ +

+ +
⎡

⎣
⎢

⎤

⎦
⎥ + +

=

−

∑ n
L r r

F L n L
LK
r

r

r

n

n

r L
r r)

( )
, ;

/( )
(

( )

Γ
1
1

1

0

1

1 1
γ
γ

γ γ
11 1

1
2 1

+ +
⎛

⎝
⎜

⎞

⎠
⎟

=
−

γr

b sP
M

M
P

)

where

γ γ

β
β

β

r

nr
i r

r L
i n L

n
K

n i
I i

=
+

=
−

=

−
− −

= − −
∑

1
1

1
0 1 1

1

00

( )
[ ,( )( )]

( ) ( )!
( )

ββ
β
β

0

1

1

1
1

r

n

r

n

r

=
=
=

/ !

and I ia b[ , ]( ) = 1 if a i b≤ ≤ and 0 otherwise.

Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity.
From equation 8.163 in :

P P M ds b= = −
+ +

− + − + +⎛
⎝⎜

⎞
⎠⎟

1
4

1

1 2

1
4

1 1 1 2
2

2
2 2

π
ς

ς θ ς
ρ ς θ ς θγ

sin
( )( sin )

−−
∫
π

π

where

ς
ρ

ρ
=

− −

+ −

1 1

1 1

2

2

Analytical Expressions Used in bercoding and BERTool

• “Common Notation for This Section” on page 5-21

• “Block Coding” on page 5-21
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• “Convolutional Coding” on page 5-23

Common Notation for This Section.

Description Notation

Energy-per-information bit-to-noise
power-spectral-density ratio

b
bE

N
=

0

Message length K

Code length N

Code rate

R
K
Nc =

Block Coding. Specific notation for block coding expressions: dmin is the
minimum distance of the code.

Soft Decision

BPSK, QPSK, OQPSK, PAM-2, QAM-4, and precoded MSK (equation 8.1-52
in ):

P Q R db
K

b c≤ − ( )1
2

2 1 2( ) min

DE-BPSK, DE-QPSK, DE-OQPSK, and DE-MSK:

P Q R d Q R db
K

b c b c≤ − ( ) − ( )⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

1
2

2 1 2 2 1 2( ) min min 

BFSK, coherent detection (equations 8.1-50 and 8.1-58 in ):
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P Q R db
K

b c≤ − ( )1
2

2 1( ) min

BFSK, noncoherent square-law detection (equations 8.1-65 and 8.1-64 in ):

P R d R d
ib

K

d b c b c

i
≤ − −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟−

1
2

2 1

2

1
2

1
2

1 2
2 1min

exp
!min min 

dd
rr

d i

i

d
min

minmin −⎛

⎝
⎜

⎞

⎠
⎟

=

− −

=

−

∑∑ 1

0

1

0

1

DPSK:

P R d R d
i

d
rb

K

d b c b c
i≤ − −( ) ( ) −⎛

⎝
⎜

⎞

⎠−
1
2

2 1

2

1 2 1
2 1min

exp
!min min

min  ⎟⎟
=

− −

=

−

∑∑
r

d i

i

d

0

1

0

1 minmin

Hard Decision

General linear block code (equations 4.3, 4.4 in , and 12.136 in ):

P
N

m t
N
m

p p

t d

b
m N m

m t

N
≤ +

⎛

⎝
⎜

⎞

⎠
⎟ −( )

= −( )⎢
⎣⎢

⎥
⎦⎥

−

= +
∑1

1

1
2

1

1
( )

min

Hamming code (equations 4.11, 4.12 in , and 6.72, 6.73 in ):

P
N

m
N
m

p p p p pb
m N m

m

N
N≈

⎛

⎝
⎜

⎞

⎠
⎟ −( ) = − −−

=

−∑1
1 1

2

1( )

(24, 12) extended Golay code (equation 4.17 in , and 12.139 in ):

P
m

p pb m
m m

m

≤
⎛

⎝
⎜

⎞

⎠
⎟ −( ) −

=
∑1

24

24
1 24

4

24

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where m is the average number of channel symbol errors that remain in
corrected N-tuple when the channel caused m symbol errors (table 4.2 in ).

Reed-Solomon code with N Q q= − = −1 2 1 :

P
N

m
N
m

P Pb

q

q s
m

s
N m

m t

N
≈

−
⎛

⎝
⎜

⎞

⎠
⎟( ) −

−
−

= +
∑2

2 1

1
1

1

1
( )

for FSK (equations 4.25, 4.27 in , 8.1-115, 8.1-116 in , 8.7, 8.8 in , and 12.142,
12.143 in ), and

P
q N

m
N
m

P Pb s
m

s
N m

m t

N
≈

⎛

⎝
⎜

⎞

⎠
⎟( ) − −

= +
∑1 1

1
1

( )

otherwise.

If log / log /2 2Q M q k h= = where h is an integer (equation 1 in ):

P ss
h= − −1 1( )

where s is the symbol error rate (SER) in an uncoded AWGN channel.

For example, for BPSK, M = 2 and P ss
q= − −1 1( )

Otherwise, Ps is given by table 1 and equation 2 in .

Convolutional Coding. Specific notation for convolutional coding

expressions: dfree is the free distance of the code, and ad is the number of
paths of distance d from the all-zero path that merge with the all-zero path
for the first time.
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Soft Decision

From equations 8.2-26, 8.2-24, and 8.2-25 in , and equations 13.28 and 13.27
in :

P a f d P db d
d dfree

<
=

∞

∑ ( ) ( )2

with transfer function

T D N a D N

dT D N
dN

a f d D

d
d f d

d d

N
d

d

d d

free

free

( , )

( , )
( )

( )=

=

=

∞

= =

∞

∑

∑
1

where f d( ) is the exponent of N as a function of d.

Results for BPSK, QPSK, OQPSK, PAM-2, QAM-4, precoded MSK, DE-BPSK,
DE-QPSK, DE-OQPSK, DE-MSK, DPSK, and BFSK are obtained as:

P d Pb E
N

R db
b c

2
0

( ) = =

where Pb is the BER in the corresponding uncoded AWGN channel. For
example, for BPSK (equation 8.2-20 in ):

P d Q R db c2 2( ) = ( )

Hard Decision

From equations 8.2-33, 8.2-28, and 8.2-29 in , and equations 13.28, 13.24,
and 13.25 in :
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P a f d P db d
d dfree

<
=

∞

∑ ( ) ( )2

where

P d
d
k

p pk d k

k d

d

2
1 2

1( ) ( )
( ) /

=
⎛

⎝
⎜

⎞

⎠
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when d is even (p is the bit error rate (BER) in an uncoded AWGN channel).

BERTool
BERTool is a bit error rate analysis application for analyzing communication
systems’ bit error rate (BER) performance. Using BERTool you can:

• Generate BER data for a communication system using

- Closed-form expressions for theoretical BER performance of selected
types of communication systems.

- The semianalytic technique.

- Simulations contained in MATLAB simulation functions or Simulink
models. After you create a function or model that simulates the system,
BERTool iterates over your choice of Eb/N0 values and collects the results.

• Plot one or more BER data sets on a single set of axes. For example,
you can graphically compare simulation data with theoretical results or
simulation data from a series of similar models of a communication system.

• Fit a curve to a set of simulation data.

• Send BER data to the MATLAB workspace or to a file for any further
processing you might want to perform.

5-25



5 Measurements

For an animated demonstration of BERTool, see the Bit Error Rate Analysis
Tool demo.

Note BERTool is designed for analyzing bit error rates only, not symbol
error rates, word error rates, or other types of error rates. If, for example,
your simulation computes a symbol error rate (SER), convert the SER to a
BER before using the simulation with BERTool.

The following sections describe the Bit Error Rate Analysis Tool (BERTool)
and provide examples showing how to use its GUI.

• “Start BERTool” on page 5-26

• “The BERTool Environment” on page 5-27

• “Computing Theoretical BERs” on page 5-30

• “Using the Semianalytic Technique to Compute BERs” on page 5-38

• “Run MATLAB Simulations” on page 5-43

• “Use Simulation Functions with BERTool” on page 5-50

• “Run Simulink Simulations” on page 5-58

• “Use Simulink Models with BERTool” on page 5-63

• “Manage BER Data” on page 5-71

Start BERTool
To open BERTool, type

bertool
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The BERTool Environment

• “Components of BERTool” on page 5-27

• “Interaction Among BERTool Components” on page 5-29

Components of BERTool.

• A data viewer at the top. It is initially empty.
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After you instruct BERTool to generate one or more BER data sets, they
appear in the data viewer. An example that shows how data sets look
in the data viewer is in “Example: Using a MATLAB Simulation with
BERTool” on page 5-44.

• A set of tabs on the bottom. Labeled Theoretical, Semianalytic, and
Monte Carlo, the tabs correspond to the different methods by which
BERTool can generate BER data.
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To learn more about each of the methods, see

- “Computing Theoretical BERs” on page 5-30

- “Using the Semianalytic Technique to Compute BERs” on page 5-38

- “Run MATLAB Simulations” on page 5-43 or “Run Simulink Simulations”
on page 5-58

• A separate BER Figure window, which displays some or all of the BER
data sets that are listed in the data viewer. BERTool opens the BER Figure
window after it has at least one data set to display, so you do not see the
BER Figure window when you first open BERTool. For an example of how
the BER Figure window looks, see “Example: Using the Theoretical Tab
in BERTool” on page 5-31.

Interaction Among BERTool Components. The components of BERTool
act as one integrated tool. These behaviors reflect their integration:

• If you select a data set in the data viewer, BERTool reconfigures the tabs to
reflect the parameters associated with that data set and also highlights the
corresponding data in the BER Figure window. This is useful if the data
viewer displays multiple data sets and you want to recall the meaning
and origin of each data set.

• If you click data plotted in the BER Figure window, BERTool reconfigures
the tabs to reflect the parameters associated with that data and also
highlights the corresponding data set in the data viewer.

Note You cannot click on a data point while BERTool is generating Monte
Carlo simulation results. You must wait until the tool generates all data
points before clicking for more information.

• If you configure the Semianalytic or Theoretical tab in a way that
is already reflected in an existing data set, BERTool highlights that
data set in the data viewer. This prevents BERTool from duplicating its
computations and its entries in the data viewer, while still showing you the
results that you requested.

• If you close the BER Figure window, then you can reopen it by choosing
BER Figure from the Window menu in BERTool.
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• If you select options in the data viewer that affect the BER plot, the BER
Figure window reflects your selections immediately. Such options relate
to data set names, confidence intervals, curve fitting, and the presence or
absence of specific data sets in the BER plot.

Note If you want to observe the integration yourself but do not yet have any
data sets in BERTool, then first try the procedure in “Example: Using the
Theoretical Tab in BERTool” on page 5-31.

Note If you save the BER Figure window using the window’s File menu,
the resulting file contains the contents of the window but not the BERTool
data that led to the plot. To save an entire BERTool session, see Saving a
BERTool Session on page 74.

Computing Theoretical BERs

• “Section Overview” on page 5-30

• “Example: Using the Theoretical Tab in BERTool” on page 5-31

• “Available Sets of Theoretical BER Data” on page 5-34

Section Overview. You can use BERTool to generate and analyze
theoretical BER data. Theoretical data is useful for comparison with your
simulation results. However, closed-form BER expressions exist only for
certain kinds of communication systems.

To access the capabilities of BERTool related to theoretical BER data, use the
following procedure:

1 Open BERTool, and go to the Theoretical tab.
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2 Set the parameters to reflect the system whose performance you want
to analyze. Some parameters are visible and active only when other
parameters have specific values. See “Available Sets of Theoretical BER
Data” on page 5-34 for details.

3 Click Plot.

For an example that shows how to generate and analyze theoretical BER
data via BERTool, see “Example: Using the Theoretical Tab in BERTool”
on page 5-31.

Also, “Available Sets of Theoretical BER Data” on page 5-34 indicates which
combinations of parameters are available on the Theoretical tab and which
underlying functions perform computations.

Example: Using the Theoretical Tab in BERTool. This example illustrates
how to use BERTool to generate and plot theoretical BER data. In particular,
the example compares the performance of a communication system that uses
an AWGN channel and QAM modulation of different orders.
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Running the Theoretical Example

1 Open BERTool, and go to the Theoretical tab.

2 Set the parameters as shown in the following figure.

3 Click Plot.

BERTool creates an entry in the data viewer and plots the data in the
BER Figure window. Even though the parameters request that Eb/N0 go
up to 18, BERTool plots only those BER values that are at least 10-8. The
following figures illustrate this step.
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4 Change the Modulation order parameter to 16, and click Plot.

BERTool creates another entry in the data viewer and plots the new data
in the same BER Figure window (not pictured).

5 Change the Modulation order parameter to 64, and click Plot.

BERTool creates another entry in the data viewer and plots the new data
in the same BER Figure window, as shown in the following figures.
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6 To recall which value ofModulation order corresponds to a given curve,
click the curve. BERTool responds by adjusting the parameters in the
Theoretical tab to reflect the values that correspond to that curve.

7 To remove the last curve from the plot (but not from the data viewer), clear
the check box in the last entry of the data viewer in the Plot column. To
restore the curve to the plot, select the check box again.

Available Sets of Theoretical BER Data. BERTool can generate a large
set of theoretical bit-error rates, but not all combinations of parameters are
currently supported. The Theoretical tab adjusts itself to your choices,
so that the combination of parameters is always valid. You can set the
Modulation order parameter by selecting a choice from the menu or by
typing a value in the field. The Normalized timing error must be between
0 and 0.5.

BERTool assumes that Gray coding is used for all modulations.

5-34



Bit Error Rate (BER)

For QAM, when log2 M is odd (M being the modulation order), a rectangular
constellation is assumed.

Combinations of Parameters for AWGN Channel Systems

The following table lists the available sets of theoretical BER data for systems
that use an AWGN channel.

Modulation Modulation
Order

Other Choices

2, 4 Differential or nondifferential encoding.PSK

8, 16, 32, 64, or a
higher power of 2

OQPSK 4 Differential or nondifferential encoding.

DPSK 2, 4, 8, 16, 32, 64,
or a higher power
of 2

PAM 2, 4, 8, 16, 32, 64,
or a higher power
of 2

QAM 4, 8, 16, 32, 64,
128, 256, 512,
1024, or a higher
power of 2

2 Orthogonal or nonorthogonal; Coherent
or Noncoherent demodulation.

4, 8, 16, 32, or a
higher power of 2

Orthogonal; Coherent demodulation.

FSK

4, 8, 16, 32, or 64 Orthogonal; Noncoherent
demodulation.
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Modulation Modulation
Order

Other Choices

MSK 2 Coherent conventional or precoded
MSK; Noncoherent precoded MSK.

CPFSK 2, 4, 8, 16, or a
higher power of 2

Modulation index > 0.

BER results are also available for the following:

• block and convolutional coding with hard-decision decoding for all
modulations except CPFSK

• block coding with soft-decision decoding for all binary modulations
(including 4-PSK and 4-QAM) except CPFSK, noncoherent non-orthogonal
FSK, and noncoherent MSK

• convolutional coding with soft-decision decoding for all binary modulations
(including 4-PSK and 4-QAM) except CPFSK

• uncoded nondifferentially-encoded 2-PSK with synchronization errors

For more information about specific combinations of parameters, including
bibliographic references that contain closed-form expressions, see the
reference pages for the following functions:

• berawgn— For systems with no coding and perfect synchronization

• bercoding — For systems with channel coding

• bersync — For systems with BPSK modulation, no coding, and imperfect
synchronization

Combinations of Parameters for Rayleigh and Rician Channel Systems

The following table lists the available sets of theoretical BER data for systems
that use a Rayleigh or Rician channel.

When diversity is used, the SNR on each diversity branch is derived from the
SNR at the input of the channel (EbNo) divided by the diversity order.
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Modulation Modulation
Order

Other Choices

2 Differential or nondifferential encoding

Diversity order 1

In the case of nondifferential encoding,
diversity order being 1, and Rician
fading, a value for RMS phase noise (in
radians) can be specified.

PSK

4, 8, 16, 32, 64, or
a higher power of
2

Diversity order 1

OQPSK 4 Diversity order 1

DPSK 2, 4, 8, 16, 32, 64,
or a higher power
of 2

Diversity order 1

PAM 2, 4, 8, 16, 32, 64,
or a higher power
of 2

Diversity order 1

QAM 4, 8, 16, 32, 64,
128, 256, 512,
1024, or a higher
power of 2

Diversity order 1

2
Correlation coefficient ∈ −[ , ]1 1 .

Coherent or Noncoherent
demodulation

Diversity order 1

In the case of a nonzero correlation
coefficient and noncoherent
demodulation, the diversity order
is 1 only.

FSK

4, 8, 16, 32, or a
higher power of 2

Noncoherent demodulation only.
Diversity order 1
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For more information about specific combinations of parameters, including
bibliographic references that contain closed-form expressions, see the
reference page for the berfading function.

Using the Semianalytic Technique to Compute BERs

• “Section Overview” on page 5-38

• “Example: Using the Semianalytic Tab in BERTool” on page 5-39

• “Procedure for Using the Semianalytic Tab in BERTool” on page 5-41

Section Overview. You can use BERTool to generate and analyze BER data
via the semianalytic technique. The semianalytic technique is discussed in ,
and is particularly relevant as background material.

To access the semianalytic capabilities of BERTool, open the Semianalytic
tab.

For further details about how BERTool applies the semianalytic technique,
see the reference page for the semianalytic function, which BERTool uses to
perform computations.
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Example: Using the Semianalytic Tab in BERTool. This example
illustrates how BERTool applies the semianalytic technique, using 16-QAM
modulation. This example is a variation on the example in , but it is tailored
to use BERTool instead of using the semianalytic function directly.

Running the Semianalytic Example

1 To set up the transmitted and received signals, run steps 1 through 4 from
the code example in . The code is repeated below.

% Step 1. Generate message signal of length >= M^L.
M = 16; % Alphabet size of modulation
L = 1; % Length of impulse response of channel
msg = [0:M-1 0]; % M-ary message sequence of length > M^L

% Step 2. Modulate the message signal using baseband modulation.
modsig = qammod(msg,M); % Use 16-QAM.
Nsamp = 16;
modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.
txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.
rxsig = txsig*exp(1i*pi/180); % Static phase offset of 1 degree

2 Open BERTool and go to the Semianalytic tab.

3 Set parameters as shown in the following figure.
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4 Click Plot.

Visible Results of the Semianalytic Example

After you click Plot, BERTool creates a listing for the resulting data in the
data viewer.

BERTool plots the data in the BER Figure window.
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Procedure for Using the Semianalytic Tab in BERTool. The procedure
below describes how you typically implement the semianalytic technique
using BERTool:

1 Generate a message signal containing at least ML symbols, where M is
the alphabet size of the modulation and L is the length of the impulse
response of the channel in symbols. A common approach is to start with an
augmented binary pseudonoise (PN) sequence of total length (log2M)M

L. An
augmented PN sequence is a PN sequence with an extra zero appended,
which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal using baseband modulation.
Supported modulation types are listed on the reference page for
semianalytic. Shape the resultant signal with rectangular pulse shaping,
using the oversampling factor that you will later use to filter the modulated
signal. Store the result of this step as txsig for later use.

3 Filter the modulated signal with a transmit filter. This filter is often a
square-root raised cosine filter, but you can also use a Butterworth, Bessel,
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Chebyshev type 1 or 2, elliptic, or more general FIR or IIR filter. If you use
a square-root raised cosine filter, use it on the nonoversampled modulated
signal and specify the oversampling factor in the filtering function. If you
use another filter type, you can apply it to the rectangularly pulse shaped
signal.

4 Run the filtered signal through a noiseless channel. This channel can
include multipath fading effects, phase shifts, amplifier nonlinearities,
quantization, and additional filtering, but it must not include noise. Store
the result of this step as rxsig for later use.

5 On the Semianalytic tab of BERTool, enter parameters as in the table
below.

Parameter Name Meaning

Eb/No range A vector that lists the values of Eb/N0 for which
you want to collect BER data. The value in
this field can be a MATLAB expression or the
name of a variable in the MATLAB workspace.

Modulation type

Modulation order

These parameters describe the modulation
scheme you used earlier in this procedure.

Differential encoding This check box, which is visible and active for
MSK and PSK modulation, enables you to
choose between differential and nondifferential
encoding.

Samples per symbol The number of samples per symbol in the
transmitted signal. This value is also the
sampling rate of the transmitted and received
signals, in Hz.

Transmitted signal The txsig signal that you generated earlier
in this procedure

Received signal The rxsig signal that you generated earlier
in this procedure

Numerator

Denominator

Coefficients of the receiver filter that BERTool
applies to the received signal
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Note Consistency among the values in the GUI is important. For example,
if the signal referenced in the Transmitted signal field was generated
using DPSK and you set Modulation type to MSK, the results might not
be meaningful.

6 Click Plot.

Semianalytic Computations and Results

After you click Plot, BERTool performs these tasks:

• Filters rxsig and then determines the error probability of each received
signal point by analytically applying the Gaussian noise distribution to
each point. BERTool averages the error probabilities over the entire
received signal to determine the overall error probability. If the error
probability calculated in this way is a symbol error probability, BERTool
converts it to a bit error rate, typically by assuming Gray coding. (If the
modulation type is DQPSK or cross QAM, the result is an upper bound on
the bit error rate rather than the bit error rate itself.)

• Enters the resulting BER data in the data viewer of the BERTool window.

• Plots the resulting BER data in the BER Figure window.

Run MATLAB Simulations

• “Section Overview” on page 5-44

• “Example: Using a MATLAB Simulation with BERTool” on page 5-44

• “Varying the Stopping Criteria” on page 5-47

• “Plotting Confidence Intervals” on page 5-48

• “Fitting BER Points to a Curve” on page 5-49
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Section Overview. You can use BERTool in conjunction with your own
MATLAB simulation functions to generate and analyze BER data. The
MATLAB function simulates the communication system whose performance
you want to study. BERTool invokes the simulation for Eb/N0 values that
you specify, collects the BER data from the simulation, and creates a plot.
BERTool also enables you to easily change the Eb/N0 range and stopping
criteria for the simulation.

To learn how to make your own simulation functions compatible with
BERTool, see “Use Simulation Functions with BERTool” on page 5-50.

Example: Using a MATLAB Simulation with BERTool. This example
illustrates how BERTool can run a MATLAB simulation function. The
function is viterbisim, one of the demonstration files included with
Communications System Toolbox software.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo tab. (The default parameters
depend on whether you have Communications System Toolbox software
installed. Also note that the BER variable name field applies only to
Simulink models.)

2 Set parameters as shown in the following figure.
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3 Click Run.

BERTool runs the simulation function once for each specified value of Eb/N0
and gathers BER data. (While BERTool is busy with this task, it cannot
process certain other tasks, including plotting data from the other tabs
of the GUI.)

Then BERTool creates a listing in the data viewer.

BERTool plots the data in the BER Figure window.
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4 To change the range of Eb/N0 while reducing the number of bits processed
in each case, type [5 5.2 5.3] in the Eb/No range field, type 1e5 in the
Number of bits field, and click Run.

BERTool runs the simulation function again for each new value of Eb/N0
and gathers new BER data. Then BERTool creates another listing in the
data viewer.

BERTool plots the data in the BER Figure window, adjusting the horizontal
axis to accommodate the new data.
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The two points corresponding to 5 dB from the two data sets are different
because the smaller value of Number of bits in the second simulation
caused the simulation to end before observing many errors. To learn more
about the criteria that BERTool uses for ending simulations, see “Varying
the Stopping Criteria” on page 5-47.

For another example that uses BERTool to run a MATLAB simulation
function, see “Example: Prepare a Simulation Function for Use with
BERTool” on page 5-54.

Varying the Stopping Criteria. When you create a MATLAB simulation
function for use with BERTool, you must control the flow so that the
simulation ends when it either detects a target number of errors or processes
a maximum number of bits, whichever occurs first. To learn more about this
requirement, see “Requirements for Functions” on page 5-51; for an example,
see “Example: Prepare a Simulation Function for Use with BERTool” on
page 5-54.
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After creating your function, set the target number of errors and the
maximum number of bits in the Monte Carlo tab of BERTool.

Typically, a Number of errors value of at least 100 produces an accurate
error rate. The Number of bits value prevents the simulation from running
too long, especially at large values of Eb/N0. However, if the Number of bits
value is so small that the simulation collects very few errors, the error rate
might not be accurate. You can use confidence intervals to gauge the accuracy
of the error rates that your simulation produces; the larger the confidence
interval, the less accurate the computed error rate.

As an example, follow the procedure described in “Example: Using a MATLAB
Simulation with BERTool” on page 5-44 and set Confidence Level to 95 for
each of the two data sets. The confidence intervals for the second data set are
larger than those for the first data set. This is because the second data set
uses a small value for Number of bits relative to the communication system
properties and the values in Eb/No range, resulting in BER values based on
only a small number of observed errors.

Note You can also use the Stop button in BERTool to stop a series of
simulations prematurely, as long as your function is set up to detect and
react to the button press.

Plotting Confidence Intervals. After you run a simulation with BERTool,
the resulting data set in the data viewer has an active menu in the
Confidence Level column. The default value is off, so that the simulation
data in the BER Figure window does not show confidence intervals.

To show confidence intervals in the BER Figure window, set Confidence
Level to a numerical value: 90%, 95%, or 99%.
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The plot in the BER Figure window responds immediately to your choice. A
sample plot is below.

For an example that plots confidence intervals for a Simulink simulation, see
“Example: Using a Simulink Model with BERTool” on page 5-59.

To find confidence intervals for levels not listed in the Confidence Level
menu, use the berconfint function.

Fitting BER Points to a Curve. After you run a simulation with BERTool,
the BER Figure window plots individual BER data points. To fit a curve to a
data set that contains at least four points, select the box in the Fit column of
the data viewer.
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The plot in the BER Figure window responds immediately to your choice. A
sample plot is below.

For an example that performs curve fitting for data from a Simulink
simulation and generates the plot shown above, see “Example: Using a
Simulink Model with BERTool” on page 5-59. For an example that performs
curve fitting for data from a MATLAB simulation function, see “Example:
Prepare a Simulation Function for Use with BERTool” on page 5-54.

For greater flexibility in the process of fitting a curve to BER data, use the
berfit function.

Use Simulation Functions with BERTool

• “Requirements for Functions” on page 5-51

• “Template for a Simulation Function” on page 5-52
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• “Example: Prepare a Simulation Function for Use with BERTool” on page
5-54

Requirements for Functions. When you create a MATLAB function
for use with BERTool, ensure the function interacts properly with the
GUI. This section describes the inputs, outputs, and basic operation of a
BERTool-compatible function.

Input Arguments

BERTool evaluates your entries in fields of the GUI and passes data to the
function as these input arguments, in sequence:

• One value from the Eb/No range vector each time BERTool invokes the
simulation function

• The Number of errors value

• The Number of bits value

Output Arguments

Your simulation function must compute and return these output arguments,
in sequence:

• Bit error rate of the simulation

• Number of bits processed when computing the BER

BERTool uses these output arguments when reporting and plotting results.

Simulation Operation

Your simulation function must perform these tasks:

• Simulate the communication system for the Eb/N0 value specified in the
first input argument.
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• Stop simulating when the number of errors or the number of processed bits
equals or exceeds the corresponding threshold specified in the second or
third input argument, respectively.

• Detect whether you click Stop in BERTool and abort the simulation in
that case.

Template for a Simulation Function. Use the following template when
adapting your code to work with BERTool. You can open it in an editor by
entering edit bertooltemplate in the MATLAB Command Window. The
description in Understanding the Template on page 53 explains the template’s
key sections, while Using the Template on page 53 indicates how to use the
template with your own simulation code. Alternatively, you can develop your
simulation function without using the template, but be sure it satisfies the
requirements described in “Requirements for Functions” on page 5-51.

Note The template is not yet ready for use with BERTool. You must insert
your own simulation code in the places marked INSERT YOUR CODE HERE.
For a complete example based on this template, see “Example: Prepare a
Simulation Function for Use with BERTool” on page 5-54.

function [ber, numBits] = bertooltemplate(EbNo, maxNumErrs, maxNumBits)
% Import Java class for BERTool.
import com.mathworks.toolbox.comm.BERTool;

% Initialize variables related to exit criteria.
totErr = 0; % Number of errors observed
numBits = 0; % Number of bits processed

% --- Set up parameters. ---
% --- INSERT YOUR CODE HERE.
% Simulate until number of errors exceeds maxNumErrs
% or number of bits processed exceeds maxNumBits.
while((totErr < maxNumErrs) && (numBits < maxNumBits))

% Check if the user clicked the Stop button of BERTool.
if (BERTool.getSimulationStop)

break;
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end

% --- Proceed with simulation.
% --- Be sure to update totErr and numBits.
% --- INSERT YOUR CODE HERE.

end % End of loop

% Compute the BER.
ber = totErr/numBits;

Understanding the Template

From studying the code in the function template, observe how the function
either satisfies the requirements listed in “Requirements for Functions” on
page 5-51 or indicates where your own insertions of code should do so. In
particular,

• The function has appropriate input and output arguments.

• The function includes a placeholder for code that simulates a system for
the given Eb/N0 value.

• The function uses a loop structure to stop simulating when the number
of errors exceeds maxNumErrs or the number of bits exceeds maxNumBits,
whichever occurs first.

Note Although the while statement of the loop describes the exit criteria,
your own code inserted into the section marked Proceed with simulation
must compute the number of errors and the number of bits. If you do not
perform these computations in your own code, clicking Stop is the only
way to terminate the loop.

• In each iteration of the loop, the function detects when the user clicks Stop
in BERTool.

Using the Template

Here is a procedure for using the template with your own simulation code:
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1 Determine the setup tasks you must perform. For example, you might
want to initialize variables containing the modulation alphabet size, filter
coefficients, a convolutional coding trellis, or the states of a convolutional
interleaver. Place the code for these setup tasks in the template section
marked Set up parameters.

2 Determine the core simulation tasks, assuming that all setup work
has already been performed. For example, these tasks might include
error-control coding, modulation/demodulation, and channel modeling.
Place the code for these core simulation tasks in the template section
marked Proceed with simulation.

3 Also in the template section marked Proceed with simulation, include
code that updates the values of totErr and numBits. The quantity totErr
represents the number of errors observed so far. The quantity numBits
represents the number of bits processed so far. The computations to update
these variables depend on how your core simulation tasks work.

Note Updating the numbers of errors and bits is important for ensuring
that the loop terminates. However, if you accidentally create an infinite
loop early in your development work using the function template, click
Stop in BERTool to abort the simulation.

4 Omit any setup code that initializes EbNo, maxNumErrs, or maxNumBits,
because BERTool passes these quantities to the function as input
arguments after evaluating the data entered in the GUI.

5 Adjust your code or the template’s code as necessary to use consistent
variable names and meanings. For example, if your original code uses a
variable called ebn0 and the template’s function declaration (first line) uses
the variable name EbNo, you must change one of the names so they match.
As another example, if your original code uses SNR instead of Eb/N0, you
must convert quantities appropriately.

Example: Prepare a Simulation Function for Use with BERTool. This
section adapts the function template given in “Template for a Simulation
Function” on page 5-52 to use simulation code from the documentation
example in .
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Preparing the Function

To prepare the function for use with BERTool, follow these steps:

1 Copy the template from “Template for a Simulation Function” on page 5-52
into a new MATLAB file in the MATLAB Editor. Save it in a folder on your
MATLAB path using the file name bertool_simfcn.

2 From the original example, the following lines are setup tasks. They are
modified from the original example to rely on the input arguments that
BERTool provides to the function, instead of defining variables such as
EbNovec and numerrmin directly.

% Set up initial parameters.
siglen = 1000; % Number of bits in each trial
M = 2; % DBPSK is binary.
hMod = modem.dpskmod('M', M); % Create a DPSK modulator
hDemod = modem.dpskdemod(hMod); % Create a DPSK

% demodulator using the modulator object
snr = EbNo; % Because of binary modulation
ntrials = 0; % Number of passes through the loop

Place these lines of code in the template section marked Set up
parameters.

3 From the original example, the following lines are the core simulation
tasks, after all setup work has been performed.

msg = randint(siglen, 1, M); % Generate message sequence.
txsig = modulate(hMod, msg); % Modulate.
rxsig = awgn(txsig, snr, 'measured'); % Add noise.
decodmsg = demodulate(hDemod, rxsig); % Demodulate.
newerrs = biterr(msg,decodmsg); % Errors in this trial
ntrials = ntrials + 1; % Update trial index.

Place the code for these core simulation tasks in the template section
marked Proceed with simulation.

4 Also in the template section marked Proceed with simulation (after the
code from the previous step), include the following new lines of code to
update the values of totErr and numBits.
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% Update the total number of errors.
totErr = totErr + newerrs;

% Update the total number of bits processed.
numBits = ntrials * siglen;

The bertool_simfcn function is now compatible with BERTool. Note that
unlike the original example, the function here does not initialize EbNovec,
define EbNo as a scalar, or use numerrmin as the target number of errors; this
is because BERTool provides input arguments for similar quantities. The
bertool_simfcn function also excludes code related to plotting, curve fitting,
and confidence intervals in the original example because BERTool enables
you to do similar tasks interactively without writing code.

Using the Prepared Function

To use bertool_simfcn in conjunction with BERTool, continue the example
by following these steps:

1 Open BERTool and go to the Monte Carlo tab.

2 Set parameters on theMonte Carlo tab as shown in the following figure.

3 Click Run.
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BERTool spends some time computing results and then plots them. They
do not appear to fall along a smooth curve because the simulation required
only five errors for each value in EbNo.

4 To fit a curve to the series of points in the BER Figure window, select the
box next to Fit in the data viewer.

BERTool plots the curve, as shown in the following figure.
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Run Simulink Simulations

• “Section Overview” on page 5-58

• “Example: Using a Simulink Model with BERTool” on page 5-59

• “Varying the Stopping Criteria” on page 5-62

Section Overview. You can use BERTool in conjunction with Simulink
models to generate and analyze BER data. The Simulink model simulates the
communication system whose performance you want to study, while BERTool
manages a series of simulations using the model and collects the BER data.

Note To use Simulink models within BERTool, you must have a Simulink
license. Communications System Toolbox software is highly recommended.
The rest of this section assumes you have a license for both Simulink and
Communications System Toolbox applications.
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To access the capabilities of BERTool related to Simulink models, open the
Monte Carlo tab.

For further details about confidence intervals and curve fitting for simulation
data, see “Plotting Confidence Intervals” on page 5-48 and “Fitting BER
Points to a Curve” on page 5-49, respectively.

Example: Using a Simulink Model with BERTool. This example
illustrates how BERTool can manage a series of simulations of a Simulink
model, and how you can vary the plot. The model is commgraycode, one of
the demonstration models included with Communications System Toolbox
software. The example assumes that you have Communications System
Toolbox software installed.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo tab. The model’s file name,
commgraycode.mdl, appears as the Simulation M-file or model
parameter. (If viterbisim.m appears there, select to indicate that
Communications System Toolbox software is installed.)

2 Click Run.
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BERTool loads the model into memory (which in turn initializes several
variables in the MATLAB workspace), runs the simulation once for each
value of Eb/N0, and gathers BER data. BERTool creates a listing in the
data viewer.

BERTool plots the data in the BER Figure window.

3 To fit a curve to the series of points in the BER Figure window, select the
box next to Fit in the data viewer.

BERTool plots the curve, as below.
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4 To indicate the 99% confidence interval around each point in the simulation
data, set Confidence Level to 99% in the data viewer.

BERTool displays error bars to represent the confidence intervals, as below.
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Another example that uses BERTool to manage a series of Simulink
simulations is in “Example: Prepare a Model for Use with BERTool” on page
5-66.

Varying the Stopping Criteria. When you create a Simulink model for
use with BERTool, you must set it up so that the simulation ends when it
either detects a target number of errors or processes a maximum number
of bits, whichever occurs first. To learn more about this requirement, see
“Requirements for Models” on page 5-63; for an example, see “Example:
Prepare a Model for Use with BERTool” on page 5-66.

After creating your Simulink model, set the target number of errors and the
maximum number of bits in the Monte Carlo tab of BERTool.
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Typically, a Number of errors value of at least 100 produces an accurate
error rate. The Number of bits value prevents the simulation from running
too long, especially at large values of Eb/N0. However, if the Number of bits
value is so small that the simulation collects very few errors, the error rate
might not be accurate. You can use confidence intervals to gauge the accuracy
of the error rates that your simulation produces; the larger the confidence
interval, the less accurate the computed error rate.

You can also click Stop in BERTool to stop a series of simulations
prematurely.

Use Simulink Models with BERTool

• “Requirements for Models” on page 5-63

• “Tips for Preparing Models” on page 5-64

• “Example: Prepare a Model for Use with BERTool” on page 5-66

Requirements for Models. A Simulink model must satisfy these
requirements before you can use it with BERTool, where the case-sensitive
variable names must be exactly as shown below:

• The channel block must use the variable EbNo rather than a hard-coded
value for Eb/N0.

• The simulation must stop when the error count reaches the value of the
variable maxNumErrs or when the number of processed bits reaches the
value of the variable maxNumBits, whichever occurs first.

You can configure the Error Rate Calculation block in Communications
System Toolbox software to stop the simulation based on such criteria.

• The simulation must send the final error rate data to the MATLAB
workspace as a variable whose name you enter in the BER variable name
field in BERTool. The variable must be a three-element vector that lists
the BER, the number of bit errors, and the number of processed bits.

This three-element vector format is supported by the Error Rate
Calculation block.
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Tips for Preparing Models. Here are some tips for preparing a Simulink
model for use with BERTool:

• To avoid using an undefined variable name in the dialog box for a Simulink
block in the steps that follow, set up variables in the MATLAB workspace
using a command such as the one below.

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

You might also want to put the same command in the model’s preload
function callback, to initialize the variables if you reopen the model in
a future MATLAB session.

When you use BERTool, it provides the actual values based on what you
enter in the GUI, so the initial values above are somewhat arbitrary.

• To model the channel, use the AWGN Channel block in Communications
System Toolbox software with these parameters:

- Mode = Signal to noise ratio (Eb/No)

- Eb/No = EbNo
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• To compute the error rate, use the Error Rate Calculation block in
Communications System Toolbox software with these parameters:

- Check Stop simulation.

- Target number of errors = maxNumErrs

- Maximum number of symbols = maxNumBits

• To send data from the Error Rate Calculation block to the MATLAB
workspace, set Output data to Port, attach a Signal to Workspace block
from DSP System Toolbox software, and set the latter block’s Limit data
points to last parameter to 1. The Variable name parameter in the
Signal to Workspace block must match the value you enter in the BER
variable name field of BERTool.

• If your model computes a symbol error rate instead of a bit error rate, use
the Integer to Bit Converter block in Communications System Toolbox
software to convert symbols to bits.
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• Frame-based simulations often run faster than sample-based simulations
for the same number of bits processed. The number of errors or number of
processed bits might exceed the values you enter in BERTool, because the
simulation always processes a fixed amount of data in each frame.

• If you have an existing model that uses the AWGN Channel block using a
Mode parameter other than Signal to noise ratio (Eb/No), you can
adapt the block to use the Eb/No mode instead. To learn about how the
block’s different modes are related to each other, press the AWGN Channel
block’s Help button to view the online reference page.

• If your model uses a preload function or other callback to initialize
variables in the MATLAB workspace upon loading, make sure before you
use the Run button in BERTool that one of these conditions is met:

- The model is not currently in memory. In this case, BERTool loads the
model into memory and runs the callback functions.

- The model is in memory (whether in a window or not), and the variables
are intact.

If you clear or overwrite the model’s variables and want to restore their
values before using the Run button in BERTool, you can use the bdclose
function in the MATLAB Command Window to clear the model from
memory. This causes BERTool to reload the model after you click Run.
Similarly, if you refresh your workspace by issuing a clear all or clear
variables command, you should also clear the model from memory by
using bdclose all.

Example: Prepare a Model for Use with BERTool. This example
starts from a Simulink model originally created as an example in the
Communications System Toolbox Getting Started documentation, and
shows how to tailor the model for use with BERTool. The example also
illustrates how to compare the BER performance of a Simulink simulation
with theoretical BER results. The example assumes that you have
Communications System Toolbox software installed.

To prepare the model for use with BERTool, follow these steps, using the
exact case-sensitive variable names as shown:

1 Open the model by entering the following command in the MATLAB
Command Window.
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doc_bpsk

2 To initialize parameters in the MATLAB workspace and avoid using
undefined variables as block parameters, enter the following command in
the MATLAB Command Window.

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

3 To ensure that BERTool uses the correct amount of noise each time it
runs the simulation, open the dialog box for the AWGN Channel block
by double-clicking the block. Set Es/No to EbNo and click OK. In this
particular model, Es/N0 is equivalent to Eb/N0 because the modulation type
is BPSK.

4 To ensure that BERTool uses the correct stopping criteria for each iteration,
open the dialog box for the Error Rate Calculation block. Set Target
number of errors to maxNumErrs, setMaximum number of symbols to
maxNumBits, and click OK.

5 To enable BERTool to access the BER results that the Error Rate
Calculation block computes, insert a Signal to Workspace block in the
model and connect it to the output of the Error Rate Calculation block.

Note The Signal to Workspace block is in DSP System Toolbox software
and is different from the To Workspace block in Simulink.
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6 To configure the newly added Signal to Workspace block, open its dialog
box. Set Variable name to BER, set Limit data points to last to 1, and
click OK.

7 (Optional) To make the simulation run faster, especially at high values of
Eb/N0, open the dialog box for the Bernoulli Binary Generator block. Select
Frame-based outputs and set Samples per frame to 1000.

8 Save the model in a folder on your MATLAB path using the file name
bertool_bpskdoc.mdl.

9 (Optional) To cause Simulink to initialize parameters if you reopen this
model in a future MATLAB session, enter the following command in the
MATLAB Command Window and resave the model.

set_param('bertool_bpskdoc','preLoadFcn',...
'EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;');

The bertool_bpskdoc model is now compatible with BERTool. To use it in
conjunction with BERTool, continue the example by following these steps:

10 Open BERTool and go to the Monte Carlo tab.

11 Set parameters on theMonte Carlo tab as shown in the following figure.
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12 Click Run.

BERTool spends some time computing results and then plots them.
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13 To compare these simulation results with theoretical results, go to the
Theoretical tab in BERTool and set parameters as shown below.

14 Click Plot.

BERTool plots the theoretical curve in the BER Figure window along with
the earlier simulation results.
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Manage BER Data

• “Exporting Data Sets or BERTool Sessions” on page 5-71

• “Importing Data Sets or BERTool Sessions” on page 5-75

• “Managing Data in the Data Viewer” on page 5-76

Exporting Data Sets or BERTool Sessions. BERTool enables you to export
individual data sets to the MATLAB workspace or to MAT-files. One option
for exporting is convenient for processing the data outside BERTool. For
example, to create a highly customized plot using data from BERTool, export
the BERTool data set to the MATLAB workspace and use any of the plotting
commands in MATLAB. Another option for exporting enables you to reimport
the data into BERTool later.

BERTool also enables you to save an entire session, which is useful if your
session contains multiple data sets that you want to return to in a later
session.
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This section describes these capabilities:

Exporting Data Sets

To export an individual data set, follow these steps:

1 In the data viewer, select the data set you want to export.

2 Choose File > Export Data.

3 Set Export to to indicate the format and destination of the data.

a If you want to reimport the data into BERTool later, you must choose
either Workspace structure or MAT-file structure to create a
structure in the MATLAB workspace or a MAT-file, respectively.

A new field called Structure name appears. Set it to the name that you
want BERTool to use for the structure it creates.

If you selected Workspace structure and you want BERTool to use your
chosen variable name, even if a variable by that name already exists in
the workspace, select Overwrite variables.

b If you do not need to reimport the data into BERTool later, a convenient
way to access the data outside BERTool is to have BERTool create a pair
of arrays in the MATLAB workspace. One array contains Eb/N0 values,
while the other array contains BER values. To choose this option, set
Export to to Workspace arrays.

Then type two variable names in the fields under Variable names.
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If you want BERTool to use your chosen variable names even if variables
by those names already exist in the workspace, select Overwrite
variables.

4 Click OK. If you selected MAT-file structure, BERTool prompts you for
the path to the MAT-file that you want to create.

To reimport a structure later, see Importing Data Sets on page 75.

Examining an Exported Structure

This section briefly describes the contents of the structure that BERTool
exports to the workspace or to a MAT-file. The structure’s fields are indicated
in the table below. The fields that are most relevant for you when you want to
manipulate exported data are paramsEvaled and data.

Name of Field Significance

params The parameter values in the
BERTool GUI, some of which might
be invisible and hence irrelevant for
computations.

paramsEvaled The parameter values that BERTool
uses when computing the data set.

data The Eb/N0, BER, and number of bits
processed.

dataView Information about the appearance in
the data viewer. Used by BERTool
for data reimport.

cellEditabilities Indicates whether the data viewer
has an active Confidence Level or
Fit entry. Used by BERTool for data
reimport.
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Parameter Fields

The params and paramsEvaled fields are similar to each other, except that
params describes the exact state of the GUI whereas paramsEvaled indicates
the values that are actually used for computations. As an example of the
difference, for a theoretical system with an AWGN channel, params records
but paramsEvaled omits a diversity order parameter. The diversity order is
not used in the computations because it is relevant only for systems with
Rayleigh channels. As another example, if you type [0:3]+1 in the GUI as
the range of Eb/N0 values, params indicates [0:3]+1 while paramsEvaled
indicates 1 2 3 4.

The length and exact contents of paramsEvaled depend on the data set
because only relevant information appears. If the meaning of the contents
of paramsEvaled is not clear upon inspection, one way to learn more is to
reimport the data set into BERTool and inspect the parameter values that
appear in the GUI. To reimport the structure, follow the instructions in
“Importing Data Sets or BERTool Sessions” on page 5-75.

Data Field

If your exported workspace variable is called ber0, the field ber0.data is a
cell array that contains the numerical results in these vectors:

• ber0.data{1} lists the Eb/N0 values.

• ber0.data{2} lists the BER values corresponding to each of the Eb/N0
values.

• ber0.data{3} indicates, for simulation or semianalytic results, how many
bits BERTool processed when computing each of the corresponding BER
values.

Saving a BERTool Session

To save an entire BERTool session, follow these steps:

1 Choose File > Save Session.
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2 When BERTool prompts you, enter the path to the file that you want
to create.

BERTool creates a text file that records all data sets currently in the data
viewer, along with the GUI parameters associated with the data sets.

Note If your BERTool session requires particular workspace variables (such
as txsig or rxsig for the Semianalytic tab), save those separately in a
MAT-file using the save command in MATLAB.

Importing Data Sets or BERTool Sessions. BERTool enables you to
reimport individual data sets that you previously exported to a structure, or
to reload entire sessions that you previously saved. This section describes
these capabilities:

To learn more about exporting data sets or saving sessions from BERTool, see
“Exporting Data Sets or BERTool Sessions” on page 5-71.

Importing Data Sets

To import an individual data set that you previously exported from BERTool
to a structure, follow these steps:

1 Choose File > Import Data.

2 Set Import from to either Workspace structure or MAT-file structure.
If you select Workspace structure, type the name of the workspace
variable in the Structure name field.

3 Click OK. If you select MAT-file, BERTool prompts you to select the file
that contains the structure you want to import.
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After you dismiss the Data Import dialog box (and the file selection dialog
box, in the case of a MAT-file), the data viewer shows the newly imported data
set and the BER Figure window plots it.

Opening a Previous BERTool Session

To replace the data sets in the data viewer with data sets from a previous
BERTool session, follow these steps:

1 Choose File > Open Session.

Note If BERTool already contains data sets, it asks you whether you
want to save the current session. If you answer no and continue with the
loading process, BERTool discards the current session upon opening the
new session from the file.

2 When BERTool prompts you, enter the path to the file you want to open. It
must be a file that you previously created using the Save Session option
in BERTool.

After BERTool reads the session file, the data viewer shows the data sets
from the file.

If your BERTool session requires particular workspace variables (such as
txsig or rxsig for the Semianalytic tab) that you saved separately in a
MAT-file, you can retrieve them using the load command in MATLAB.

Managing Data in the Data Viewer. The data viewer gives you flexibility
to rename and delete data sets, and to reorder columns in the data viewer.

• To rename a data set in the data viewer, double-click its name in the BER
Data Set column and type a new name.
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• To delete a data set from the data viewer, select it and choose Edit >
Delete.

Note If the data set originated from the Semianalytic or Theoretical
tab, BERTool deletes the data without asking for confirmation. You cannot
undo this operation.

• To move a column in the data viewer, drag the column’s heading to the left
or right with the mouse. For example, the image below shows the mouse
dragging the BER column to the left of its default position. When you
release the mouse button, the columns snap into place.

Error Rate Test Console
The Error Rate Test Console is an object capable of running simulations for
communications systems to measure error rate performance.

The Error Rate Test Console is compatible with communications systems
created with a specific API defined by the testconsole.SystemBasicAPI class.
Within this class definition you define the functionality of a communications
system.

You attach a system to the Error Rate Test Console to run simulations and
obtain error rate data.

You obtain error rate results at different locations in the system under test,
by defining unique test points. Each test point contains a pair of probes that
the system uses to log data to the test console. The information you register
with the test console specifies how each pair of test probes compares data.
For example, in a frame based system, the Error Rate Test Console can
compare transmitted and received header bits or transmitted and received
data bits. Similarly, it can compare CRC error counts to obtain frame error
rates at different points in the system. You can also configure the Error Rate
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Test Console to compare data in multiple pairs of probes, obtaining multiple
error rate results.

You can run simulations with as many test parameters as desired, parse
the results, and obtain parametric or surface plots by specifying which
parameters act as independent variables.

There are two main tasks associated with using the Error Rate Test Console:
Creating a System and Attaching a System to the Error Rate Test Console.

When you run a system that is not attached to an Error Rate Test Console,
the system is running in debug mode. Debug mode is useful when evaluating
or debugging the code for the system you are designing.

To see a full-scale example on creating a system and running simulations,
see Running Simulations Using the Error Rate Test Console in the
Communications System Toolbox Getting Started Guide.

The following sections describe the Error Rate Test Console and its
functionality:

• “Creating a System” on page 5-78

• “Methods Allowing You to Communicate with the Error Rate Test Console
at Simulation Run Time” on page 5-82

• “Debug Mode” on page 5-84

• “Run Simulations Using the Error Rate Test Console” on page 5-85

• “Bit Error Rate Simulations For Various Eb/No and Modulation Order
Values ” on page 5-99

Creating a System
You attach a system to the Error Rate Test Console to run simulations and
obtain error rate data. When you attach the system under test, you also
register specific information to the test console in order to define the system’s
test inputs, test parameters, and test probes.

Creating a communications system for use with the Error Rate Test Console,
involves the following steps.
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• Writing a system class, extending the testconsole.SystemBasicAPI class.

• Writing a registration method

- Registration is test related

- Defines items such as test parameters, test probes, and test inputs

• Writing a setup method

• Writing a reset method

• Writing a run method

Methods allows the system to communicate with the test console.

You can see an example of a system file by opening MPSKSYSTEM.m, which
resides in the following location:

matlab\toolbox\comm\comm\+commtest

Writing A Register Method. Using the register method, you register
test inputs, test parameters, and test probes to the Error Rate Test
Console. You register these items to the Error Rate Test Console using the
registerTestInput, registerTestParameter, and registerTestProbe
methods.

• Write a register method for every communication system you create.

• If you do not implement a register method for a system, you can still
attach the system to the Error Rate Test Console. While the test console
runs the specified number of iterations on the system, you cannot control
simulation parameters or retrieve results from the simulation.

Registering Test Inputs

In order to run simulations, the system under test requests test inputs
from the Error Rate Test Console. These test inputs provide data, driving
simulations for the system under test.

A system under test cannot request a specific input type until you attach it
to the Error Rate Test Console. Additionally, the specific input type must be
registered to the test console.

5-79



5 Measurements

Inside the register method, you call the
registerTestInput(sys,inputName) method to register test inputs.

• sys represents the handle to a user-defined system object.

• inputName represents the name of the input that the system registers. This
name must coincide with the name of an available test input in the Error
Rate Test Console or an error occurs.

- ’NumTransmissions’ - calling the getInput method returns the frame
length. The system itself is responsible for generating a data frame
using a data source.

- ’RandomIntegerSource’ - calling the getInput method returns a vector
of symbols with a length the Error Rate Test Console FrameLength
property specifies. If the system registers this source type, then it
must also register a test parameter named ’M’ that corresponds to the
modulation order.

Registering Test Parameters

Test parameters are the system parameters for which the Error Rate Test
Console obtains simulation results. You specify the sweep range of these
parameters using the Error Rate Test Console and obtain simulation results
for different system conditions.

The system under test registers a system parameter to the Error
Rate Test Console, creating a test parameter. You register
a test parameter to the Error Rate Test Console using the
registerTestParameter(sys,name,default,validRange) method.

• sys represents the handle to the user-defined system object

• name represents the parameter name that the system registers to the Error
Rate Test Console

• default specifies the default value of the test parameter – it can be a
numeric value or a string

• validRange specifies a range of input values for the test parameter — it
can be a 1x2 vector of numeric values with upper and lower ranges or a cell
array of chars (an Enum).
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A parameter of type char becomes useful when defining system conditions.
For example, in a communications system, a Channel parameter may be
defined so that it takes values such as ‘Rayleigh’, ‘Rician’, or ‘AWGN’.
Depending on the Channel char value, the system may filter transmitted data
through a different channel. This allows the simulation of the system over
different channel scenarios.

If the system registers a test parameter named ‘X’ then the system must also
contain a readable property named ‘X’. If not, the registration process issues
an error. This process ensures that calling the getTestParameter method in
debug mode returns the value held by the corresponding property.

Registering Test Probes

Test probes log the simulation data the Error Rate Test Console uses for
computing test metrics, such as: number of errors, number of transmissions,
and error rate. To log data into a probe, your communications system must
register the probe to the Error Rate Test Console.

You register a test probe to the Error Rate Test Console using the
registerTestProbe(sys,name,description) method.

• sys represents the handle to the user-defined system object

• name represents the name of the test probe

• description contains information about the test probes; useful for
indicating what the probe is used for. The description input is optional.

You can define an arbitrary number of probes to log test data at several points
within the system.

Writing a Setup Method. The Error Rate Test Console calls the setup
method at the beginning of simulations for each new sweep point. A sweep
point is one of several sets of simulation parameters for which the system
will be simulated. Using the getTestParameter method of the system
under test, the setup method requests the current simulation sweep values
from the Error Rate Test Console and sets the various system components
accordingly. The setup method sets the system to the conditions the current
test parameter sweep values generate.
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Writing a setup method for each communication system you create is not
necessary. The setup method is optional.

Writing a Reset Method. Use the reset method to reset states of various
system components, such as: objects, data buffers, or system flags. The Error
Rate Test Console calls the reset method of the system:

• at the beginning of simulations for a new sweep point. (This condition
occurs when you set the ResetMode of the Error Rate Test Console to “Reset
at new simulation point’.)

• at each simulation iteration. (This condition occurs when you set the
ResetMode of the Error Rate Test Console to ’Reset at every iteration’.)

Writing a reset method for each communication system you create is not
mandatory. The reset method is optional.

Writing a Run Method. Write a runmethod for each communication system
you create. The run method includes the core functionality of the system
under test. At each simulation iteration, the Error Rate Test Console calls the
run method of the system under test.

When designing a communication system, ensure at run time that your system
sets components to the current simulation test parameter sweep values.
Depending on your unique design, at run time, the communication system:

• requests test inputs from the test console using the getInput method

• logs test data to its test probes using the setTestProbeData method

• logs user-data to the test console using the setUserData method

• Although it is recommended you do this at setup time, the system can also
request the current simulation sweep values using the getTestParameter
method.

Methods Allowing You to Communicate with the Error Rate
Test Console at Simulation Run Time

• “Getting Test Inputs From the Error Rate Test Console” on page 5-83
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• “Getting the Current Simulation Sweep Value of a Registered Test
Parameter” on page 5-83

• “Logging Test Data to a Registered Test Probe” on page 5-83

• “Logging User-Defined Data To The Test Console” on page 5-84

Getting Test Inputs From the Error Rate Test Console. At simulation
time, the communications system you design can request input data to the
Error Rate Test Console. To request a particular type of input data, the
system under test must register the specific input type to the Error Rate Test
Console. The system under test calls getInput(obj,inputName) method to
request test inputs to the test console.

• obj represents the handle of the Error Rate Test Console

• inputName represents the input that the system under test gets from the
Error Rate Test Console

For an Error Rate Test Console, ’NumTransmissions’ or
’RandomDiscreetSource’ are acceptable selections for inputName.

The system under test provides the following inputs:

• ’NumTransmissions’ - calling the getInput method returns the frame
length. The system itself is responsible for generating a data frame using a
data source.

• ’RandomIntegerSource’ - calling the getInput method returns a vector of
symbols with a length the Error Rate Test Console FrameLength property
specifies. If the system registers this source type, then it must also register
a test parameter named ’M’ that corresponds to the modulation order.

Getting the Current Simulation Sweep Value of a Registered Test
Parameter. For each simulation iteration, the system under test may require
the current simulation sweep values from the registered test parameters. To
obtain these values from the Error Rate Test console, the system under test
calls the getTestParameter(sys,name) method.

Logging Test Data to a Registered Test Probe. At simulation time,
the system under test may log data to a registered test probe using the
setTestProbeData(sys,name,data) method.
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• sys represents the handle to the system

• name represents the name of a registered test probe

• data represents the data the probe logs to the Error Rate Test Console.

Logging User-Defined Data To The Test Console. At simulation time,
the system under test may log user-data to the Error Rate Test Console by
calling the setUserData method. This user-data passes directly to the specific
user-defined metric calculator functions. Log user-data to the Error Rate
Test Console as follows:

setUserData(sys,data)

• sys represents the handle to the system

• data represents the data the probe logs to the Error Rate Test Console.

Debug Mode
When you run a system that is not attached to an Error Rate Test Console,
the system is running in debug mode. Debug mode is useful when evaluating
or debugging the code for the system you are designing.

A system that extends the testconsole.SystemBasicAPI class can run by itself,
without the need to attach it to a test console. This scenario is referred to as
debug mode. Debug mode is useful when evaluating or debugging the code for
the system you are designing. For example, if you define break points when
designing your system, you can run the system in debug mode and confirm
that the system runs without errors or warnings.

Implementing A Default Input Generator Function For Debug Mode.
If your system registers a test input and calls the getInput method at
simulation run time then for it to run in debug mode, the system must
implement a default input generator function. This method should return an
input congruent to the test console.

input = generateDefaultInput(obj)
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Run Simulations Using the Error Rate Test Console

• “Creating a Test Console” on page 5-85

• “Attaching a System to the Error Rate Test Console” on page 5-86

• “Defining Simulation Conditions” on page 5-86

• “Registering a Test Point” on page 5-89

• “Getting Test Information” on page 5-90

• “Running a Simulation” on page 5-90

• “Getting Results and Plotting Data” on page 5-91

• “Parsing and Plotting Results for Multiple Parameter Simulations” on
page 5-91

Running simulations with the Error Rate Test Console involves the following
tasks:

• Creating a test console

• Attaching a system

• Defining simulation conditions

- Specifying stop criterion

- Specifying iteration mode

- Specifying reset mode

- Specifying sweep values

• Registering test points

• Running simulations

• Getting results and plotting

Creating a Test Console. You create a test console in one of the following
ways:

• h = commtest.ErrorRate returns an error rate test console, h. The error
rate test console runs simulations of a system under test to obtain error
rates.
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• h = commtest.ErrorRate(sys) returns an error rate test console, h, with
an attached system under test, sys.

• h = commtest.ErrorRate(sys,'PropertyName',PropertyValue,...)
returns an error rate test console, h, with an attached system under test,
sys. Each specified property, ’PropertyName’, is set to the specified value,
PropertyValue.

• h = commtest.ErrorRate('PropertyName',PropertyValue,...)
returns an error rate test console, h, with each specified property
’PropertyName’, set to the specified value, PropertyValue.

Attaching a System to the Error Rate Test Console. You attach a system
to the Error Rate Test Console to run simulations and obtain error rate data.
There are two ways to attach a system to the Error Rate Test Console.

• To attach a system to the Error Rate Test Console, type the following at
the MATLAB command line:

attachSystem(testConsole, mySystem)

• To attach a system at construction time of an Error Rate Test Console,
see Creating a Test Console.

• mySystem is the name of the system under test

If system under test A is currently attached to the Error Rate Test Console
H1, and you call attachSystem(H2,A), then A detaches from H1 and attaches
to Error Rate Test Console H2. This causes system A to display a warning
message, stating that it has detached from H1 and attached to H2.

Defining Simulation Conditions.

Stop Criterion

The Error Rate Test Console controls the simulation stop criterion using
the SimulationLimitOption property. You define the criterion to stop a
simulation when reaching either a specific number of transmissions or a
specific number of errors.
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• Setting SimulationLimitOption property to ’Number of transmissions’
stops the simulation for each sweep parameter point when the Error
Rate Test Console counts the number of transmissions specified in
MaxNumTransmissions

• Setting SimulationLimitOption property to ’Number of errors’ stops
the simulation for a sweep parameter point when the Error Rate Test
Consols counts the number of errors specified in MinNumErrors. The
ErrorCountTestPoint property should be set to the name of the registered
test point containing the error count being compared to the MinNumErrors
property to control the simulation length.

• Setting SimulationLimitOption property to ’Number of errors or
transmissions’ stops the simulation for each sweep parameter point when
the Error Rate Test Console completes the number of transmissions
specified in MaxNumTransmissions or when obtaining the number of errors
specified in MinNumErrors, whichever happens first.

Iteration Mode

The iteration mode defines the way that the Error Rate Test Console combines
test parameter sweep values to perform simulations. The IterationMode
property of the test console controls this behavior.

• Setting IterationMode to ’Combinatorial’ performs simulations for all
possible combinations of registered test parameter sweep values.

• Setting IterationMode to ’Indexed’ performs simulations for all indexed
sweep value sets. The ith sweep value set consists of the ith element from
every sweep value vector for each registered test parameter. All sweep
value vectors must be of equal length, with the exception of those that
are unit length.

Specifying and Obtaining Sweep Values

The Error Rate Test Console performs simulations for a set of sweep points,
which consist of combinations of sweep values specified for each registered
test parameter. The way the test console forms sweep points depends on the
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IterationMode settings. The iteration mode defines the way in which sweep
values for different test parameters combine to produce simulation results.

Using the setTestParameterSweepValues method, you specify sweep values
for each test parameter that the system under test registers to the Error
Rate Test Console.

setTestParameterSweepValues(obj,name,value)

where

• obj represents handle to the Error Rate Test Console.

• name represents the name of the registered test parameter (this name must
correspond to a test parameter registered by the system under test or an
error occurs)

• value represents the sweep values you specify for the test parameter
named ‘name’. Depending on the application, sweep values may be a vector
with numeric values or a cell array of characters. The test console issues
an error if you attempt to set sweep values that are out of the specified
valid range for a test parameter (valid ranges are defined by the system
when attaching to a test console).

You obtain the list of test parameters registered by the system under test
using the info method of the Error Rate Test Console.

You obtain the sweep values for a specific registered test parameter using
the getTestParameterSweepValues method of the Error Rate Test Console.
You obtain the valid ranges of a specific registered test parameter using the
getTestParameterValidRanges method of the Error Rate Test Console.

If you do not specify sweep values for a particular test parameter, the
Error Rate Test Console. always uses the parameter’s default value to run
simulations. (Default values for test parameters are defined by the system
when attaching to a test console at registration time.)
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Reset Mode

You control the reset criteria for the system under test using the
SystemResetMode property of the Error Rate Test Console.

• Setting SystemResetMode to ’Reset at new simulation point’ resets the
system under test resets at the beginning of iterations for a new simulation
sweep point.

• Setting SystemResetMode to ’Reset at every iteration’ resets the system
under test at every simulation.

Registering a Test Point. You obtain error rate results at different points in
the system under test, by defining unique test points. Each test point groups
a pair of probes that the system under test uses to log data and the Error Rate
Test Console uses to obtain data. In order to create a test point for a pair of
probes, the probes must be registered to the Error Rate Test Console.

The Error Rate Test Console calculates error rates by comparing the data
available in a pair of probes.

Test points hold error and transmission counts for each sweep point
simulation.

The info method displays which test points are registered to the test console.

registerTestPoint(h, name, actprobe, expprobe) registers a new test point with
name, name, to the error rate test console, h.

The test point must contain a pair of registered test probes actprobe and
expprobe whose data will be compared to obtain error rate values. actprobe
contains actual data, and expprobe contains expected data. Error rates will be
calculated using a default error rate calculator function that simply performs
one-to-one comparisons of the data vectors available in the probes.

registerTestPoint(h, name, actprobe, expprobe, fcnhandle) adds a function
handle, fcnhandle, that points to a user-defined error calculator function that
will be used instead of the default function to compare the data in probes
actprobe and exprobe, to obtain error rate results.
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Writing a user-defined error calculator function

A user-defined error calculator function must comply with the following
syntax:

[ecnt tcnt] = functionName(act, exp, udata) where ecnt output corresponds
to the error count, and tcnt output is the number of transmissions used to
obtain the error count. Inputs act and exp correspond to actual and expected
data. The error rate test console will set these inputs to the data available
in the pair of test point probes actprobe and expprobe previously mentioned.
udata is a user data input that the system under test may pass to the test
console at run time using the setUserData method. udata may contain data
necessary to compute errors such as delays, data buffers, and so on. The
error rate test console will pass the same user data logged by the system
under test to the error calculator functions of all the registered test points.
You call the info method to see the names of the registered test points and the
error rate calculator functions associated with them, and to see the names
of the registered test probes.

Getting Test Information. Returns a report of the current test console
settings.

info(h) displays:

• Test console name

• System under test name

• Available test inputs

• Registered test inputs

• Registered test parameters

• Registered test probes

• Registered test points

• Metric calculator functions

• Test metrics

Running a Simulation. You run simulations by calling the run method of
the Error Rate Test Console.
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run(testConsole) runs a specified number of iterations of an attached
system under test for a specified set of parameter values. If a Parallel
Computing Toolbox™ license is available and a matlabpool is open, then you
can distribute the iterations among the available number of workers.

Getting Results and Plotting Data. Call the getResults method of the
error rate test console to obtain test results.

r = getResults(testConsole) returns the simulation results, r, for the test
console, testConsole. r is an object of type testconsole.Results and contains
the simulation data for all the registered test points.

You call the getData method of results object r to get simulation results data.
You call the plot and semilogy method of the results object r to plot results
data. See testconsole.Results for more information.

Parsing and Plotting Results for Multiple Parameter Simulations. The
DPSKModulationTester.mat file contains an Error Rate Test Console with a
DPSK modulation system. This system defines three test parameters:

• The bit energy to noise power spectral density ratio, EbNo (in decibels)

• The modulation order, M

• The maximum Doppler shift, MaxDopplerShift (in hertz)

These parameters have the following sweep values:

• EbNo = [-2:4] dB

• M = [2 4 8 16]

• MaxDopplerShift = [0 0.001 0.09] Hz

Because simulations generally take a long time to run, a simulation was run
offline. DPSKModulationTester.mat file contains a saved Error Rate Test
Console with the saved results. The simulations were run to obtain at least
2500 errors and 5e6 frame transmissions per simulation point.

Load the simulation results by entering the following at the MATLAB
command line:
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load DPSKModulationTester.mat

To parse and plot results for multiple parameter simulations, perform the
following steps:

1 Using the getSweepParameterValues method, display the sweep
parameter values used in the simulation for each test parameter. For
example, you display the sweep values for MaxDopplerShift by entering:

getTestParameterSweepValues(testConsole,'MaxDopplerShift')

MATLAB returns the following result:

ans =

0 0.0010 0.0900

2 Get the results object that parses and plots simulation results by entering
the following at the command line:

DPSKResults = getResults(testConsole)

MATLAB returns the following result:

DPSKResults =

TestConsoleName: 'commtest.ErrorRate'
SystemUnderTestName: 'commexample.DPSKModulation'

IterationMode: 'Combinatorial'
TestPoint: 'BitErrors'

Metric: 'ErrorRate'
TestParameter1: 'EbNo'
TestParameter2: 'None'

3 Use the setParsingValues method to enable the plotting of error rate
results versus Eb/No for a modulation order of 4 and maximum Doppler
shift of 0.001 Hz. To do so, enter the following:.

setParsingValues(DPSKResults,'M',4,'MaxDopplerShift',0.001)

4 Use the getParsingValues method to verify the current parsing values
settings:
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getParsingValues(DPSKResults)

MATLAB returns the following:

ans =

EbNo: -2
M: 4

MaxDopplerShift: 1.0000e-003

If not specified, the parsing value for a test parameter defaults to its first
sweep value. In this example, the first sweep value for EbNo equals -2 dB.
However, in this example, TestParameter1 is set to EbNo; therefore, the
Error Rate Test Console plots results for all EbNo sweep values, not just
for the value listed by the getParsingValues method.

5 Obtain a log-scale plot of bit error rate versus Eb/No for a modulation order
of 4 and a maximum Doppler shift of 0.001 Hz:

semilogy(DPSKResults)

MATLAB generates the following figure.
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6 Set the TestParameter2 property of the results object to ’MaxDopplerShift’.
This setting enables the plotting of multiple error rate curves versus Eb/No
for each sweep value of the maximum Doppler shift.

DPSKResults.TestParameter2 = 'MaxDopplerShift';

7 Obtain log-scale plots of bit error rate versus Eb/No for a modulation order
of 2 at each of the maximum Doppler shift sweep values.

setParsingValues(DPSKResults,'M',2)
semilogy(DPSKResults)

MATLAB generates the following figure.
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8 Obtain the same type of curves as in the previous step, but now for a
modulation order of 16.

setParsingValues(DPSKResults,'M',16)
semilogy(DPSKResults)

MATLAB generates the following figure.
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9 Obtain error rate plots versus the modulation order for each Eb/No sweep
value by setting TestParameter1 equal to M and TestParameter2 equal to
EbNo. You can plot the results for the case when the maximum Doppler
shift is 0 Hz by using the setParsingValues method:

DPSKResults.TestParameter1 = 'M';
DPSKResults.TestParameter2 = 'EbNo';
setParsingValues(DPSKResults, 'MaxDopplerShift',0)
semilogy(DPSKResults)

MATLAB generates the following figure.
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10 Obtain a data matrix with the bit error rate values previously plotted by
entering the following:

BERMatrix = getData(DPSKResults)

MATLAB returns the following result:

BERMatrix =

Columns 1 through 7

0.2660 0.2467 0.2258 0.2049 0.1837 0.1628 0.1418
0.3076 0.2889 0.2702 0.2504 0.2296 0.2082 0.1871
0.3510 0.3384 0.3258 0.3120 0.2983 0.2837 0.2685
0.3715 0.3631 0.3535 0.3442 0.3350 0.3246 0.3147

Columns 8 through 13

0.1217 0.1022 0.0844 0.0677 0.0534 0.0406
0.1658 0.1451 0.1254 0.1065 0.0890 0.0728
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0.2531 0.2369 0.2204 0.2042 0.1874 0.1704
0.3044 0.2945 0.2839 0.2735 0.2626 0.2512

The rows of the matrix correspond to the values of the test parameter
defined by the TestParameter1 property, M. The columns correspond to
the values of the test parameter defined by the TestParameter2 property,
EbNo.

11 Plot the results as a 3-D data plot by entering the following:

surf(DPSKResults)

MATLAB generates the following plot:

In this case, the parameter defined by the TestParameter1 property, M,
controls the x-axis and the parameter defined by the TestParameter2
property, EbNo, controls the y-axis.
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Bit Error Rate Simulations For Various Eb/No and Modulation
Order Values

• “Load the Error Rate Test Console” on page 5-99

• “Run the Simulation and Obtain Results” on page 5-100

• “Generate an Error Rate Results Figure Window” on page 5-101

• “Run Parallel Simulations Using Parallel Computing Toolbox Software” on
page 5-103

• “Create a System File and Attach It to the Test Console” on page 5-104

• “Configure the Error Rate Test Console and Run a Simulation” on page
5-108

• “Optimize System Performance Using Parameterized Simulations” on
page 5-111

Load the Error Rate Test Console. The Error Rate Test Console is a
simulation tool for obtaining error rate results. The MATLAB™ software
includes a data file for use with the Error Rate Test Console. You will use the
data file while performing the steps of this tutorial. The data file contains
an Error Rate Test Console object with an attached Gray coded modulation
system. This example Error Rate Test Console is configured to run bit error
rate simulations for various EbNo and modulation order, or M, values.

1 Load the file containing the Error Rate Test Console and attached Gray
coded modulation system. At the MATLAB command line, enter:

load GrayCodedModTester_EbNo_M

2 Examine the test console by displaying its properties. At the MATLAB
command line, enter:

testConsole

MATLAB returns the following output:

testConsole =

Description: 'Error Rate Test Console'
SystemUnderTestName: 'commexample.GrayCodedMod_EbNo_M'

5-99



5 Measurements

IterationMode: 'Combinatorial'
SystemResetMode: 'Reset at new simulation point'

SimulationLimitOption: 'Number of errors or transmissions'
TransmissionCountTestPoint: 'DemodBitErrors'

MaxNumTransmissions: 100000000
ErrorCountTestPoint: 'DemodBitErrors'

MinNumErrors: 100

Notice that SystemUnderTest is a Gray coded modulation system. Because
the SimulationLimitOption is ’Number of error or transmission’, the
simulation runs until reaching 100 errors or 1e8 bits.

Run the Simulation and Obtain Results. In this example, you use tic and
tok to compare simulation run time.

1 Run the simulation, using the tic and toc commands to measure
simulation time. At the MATLAB command line, enter:

tic; run(testConsole); toc

MATLAB returns output similar to the following:

Running simulations...
Elapsed time is 174.671632 seconds.

2 Obtain the results of the simulation using the getResults method by
typing the following at the MATLAB command line:

grayResults = getResults(testConsole)

MATLAB returns the following output:

grayResults =

TestConsoleName: 'commtest.ErrorRate'
SystemUnderTestName: 'commexample.GrayCodedMod_EbNo_M'

IterationMode: 'Combinatorial'
TestPoint: 'DemodBitErrors'

Metric: 'ErrorRate'
TestParameter1: 'EbNo'
TestParameter2: 'None'
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In the next section, you use the results object to obtain error values and plot
error rate curves.

Generate an Error Rate Results Figure Window. The semilogy method
generates a figure containing error rate curves for the demodulator bit error
test point (DemodBitErrors) of the Gray coded modulation system. The
next figure shows an Error Rate and Eb over No curve for the demodulator
bit errors test point. This test point collects bit errors by comparing the
bits the system transmits with the bits it receives. The x-axis displays the
TestParameter1 property of grayResults, which contains EbNo values.

1 Generate the figure by entering the following at the MATLAB command
line:

semilogy(grayResults)

This script generates the following figure.
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2 Set the TestParameter2 property to M. At the MATLAB command line,
enter:

grayResults.TestParameter2 = 'M'

Previously, the simulation ran for multiple modulation order (M) values.
The x-axis displays the TestParameter1 property of grayResults, which
contains EbNo values. Although the simulation ran for multiple M values,
this run contains data for M=2.

3 Plot multiple error rate curves by entering the following at the MATLAB
command line.

semilogy(grayResults)

This script generates the following figure.
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Run Parallel Simulations Using Parallel Computing Toolbox Software.
If you have a Parallel Computing Toolbox user license and you create a
matlabpool, the test console runs the simulation in parallel. This approach
reduces the processing time.

Note If you do not have a Parallel Computing Toolbox user license you are
unable to perform this section of the tutorial.

1 If you have a Parallel Computing Toolbox license, run the following
command to start your default matlabpool:

matlabpool

If you have a multicore computer, then the default matlabpool uses the
cores as workers.
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2 Using the workers, run the simulation. At the MATLAB command line,
enter:

tic; run(testConsole); toc

MATLAB returns output similar to the following:

4 workers available for parallel computing. Simulations ...,
will be distributed among these workers.
Running simulations...
Elapsed time is 87.449652 seconds.

Notice that the simulation runs more than three times as fast than in the
previous section.

Create a System File and Attach It to the Test Console. In the previous
sections, you used an existing Gray coded modulator system file to generate
data. In this section, you create a system file and then attach it to the Error
Rate Test Console.

This example outlines the tasks necessary for converting legacy code to a
system file you can attach to the Error Rate Test Console. Use commdoc_gray
as the starting point for your system file. The files you use in this section of
the tutorial reside in the following folder:

matlab\help\toolbox\comm\examples

1 Copy the system basic API template, SystemBasicTemplate.m, as
MyGrayCodedModulation.m.

2 Rename the references to the system name in the file. First, rename the
system definition by changing the class name to MyGrayCodedModulation.
Replace the following lines, lines 1 and 2, of the file:

classdef SystemBasicTemplate < testconsole.SystemBasicAPI
%SystemBasicTemplate Template for creating a system

with these lines:

classdef MyGrayCodedModulation < testconsole.SystemBasicAPI
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%MyGrayCodedModulation Gray coded modulation system

3 Rename the constructor by replacing:

function obj = SystemBasicTemplate
%SystemBasicTemplate Construct a system

with

function obj = MyGrayCodedModulation
%MyGrayCodedModulation Construct a Gray coded modulation system

4 Enter a description for your system. Update the obj.Description
parameter with the following information:

obj.Description = 'Gray coded modulation';

Because you are not using the reset and setup methods for this system,
leave these methods empty.

5 Copy lines 12–44 from commdoc_gray.m to the body of the run method.

6 Copy Lines 54–57 from commdoc_gray.m to the body of the run method.

7 Change EbNo to a test parameter. This change allows the system to obtain
EbNo values from the Error Rate Test Console. As a test parameter, EbNo
becomes a variable, which allows simulations to run for different values.
Locate the following line of syntax in the file:

EbNo = 10; % In dB

Replace it with:

EbNo = getTestParameter(obj,'EbNo');

8 Add modulation order, M, as a new test parameter for the simulation.
Locate the following syntax:

M = 16; % Size of signal constellation

Replace it with:
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M = getTestParameter(obj,'M');

9 Register the test parameters to the test console.

• Declare EbNo as a test parameter by placing the following line of code in
the body of the register method:

registerTestParameter(obj,'EbNo',0,[-50 50]);

The parameter defaults to 0 dB and can take values between -50 dB
and 50 dB.

• Declare M as a test parameter by placing the following line of code in
the body of the register method:

registerTestParameter(obj,'M',16,[2 1024]);

The parameter defaults to 16 QAM Modulation and can take values
from 2 through 1024.

10 Add EbNo and M to the test parameters list in the
MyGrayCodedModulationFile file.

% Test Parameters
properties

EbNo = 0;
M = 16;

end

This adds EbNo and M to the possible test parameters list. EbNo defaults
to a value of 0 dB. M defaults to a value of 16.

11 Define test probe locations in the run method. In this example, you are
calculating end-to-end error rate. This calculation requires transmitted
bits and received bits. Add one probe for obtaining transmitted bits and
one probe for received bits.

• Locate the random binary data stream creation code by searching for
the following lines:

% Create a binary data stream as a column vector.
x = randi([0 1],n,1); % Random binary data stream
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• Add a probe, TxBits, after the random binary data stream creation:

% Create a binary data stream as a column vector.
x = randi([0 1],n,1); % Random binary data stream
setTestProbeData(obj,'TxBits',x);

This code sends the random binary data stream, x, to the probe TxBits.

• Locate the demodulation code by searching for the following lines:

% Demodulate signal using 16-QAM.
z = demodulate(hDemod,yRx);

• Add a probe, RxBits, after the demodulation code.

% Demodulate signal using 16-QAM.
z = demodulate(hDemod,yRx);
setTestProbeData(obj,'RxBits',z);

This code sends the binary received data stream, z, to the probe RxBits.

12 Register the test probes to the Error Rate Test Console, making it
possible to obtain data from the system. Add these probes to the function
register(obj) by adding two lines to the register method:

function register(obj)
% REGISTER Register the system with a test console
% REGISTER(H) registers test parameters and test probes of the
% system, H, with a test console.

registerTestParameter(obj,'EbNo',0,[-50 50]);
registerTestParameter(obj,'M',16,[2 1024]);

registerTestProbe(obj,'TxBits')
registerTestProbe(obj,'RxBits')

end

13 Save the file. The file is ready for use with the system.

14 Create a Gray coded modulation system. At the MATLAB command line,
enter:

mySystem = MyGrayCodedModulation
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MATLAB returns the following output:

mySystem =

Description: 'Gray coded modulation'
EbNo: 0

M: 16

15 Create an Error Rate Test Console by entering the following at the
MATLAB command line:

testConsole = commtest.ErrorRate

The MATLAB software returns the following output:

testConsole =

Description: 'Error Rate Test Console'
SystemUnderTestName: 'commtest.MPSKSystem'

FrameLength: 500
IterationMode: 'Combinatorial'

SystemResetMode: 'Reset at new simulation point'
SimulationLimitOption: 'Number of transmissions'

TransmissionCountTestPoint: 'Not set'
MaxNumTransmissions: 1000

16 Attach the system file MyGrayCodedModulation to the error rate test
console by entering the following at the MATLAB command line:

attachSystem(testConsole, mySystem)

Configure the Error Rate Test Console and Run a Simulation. Configure
the Error Rate Test Console to obtain error rate metrics from the attached
system. The Error Rate Test Console defines metrics as number of errors,
number of transmissions, and error rate.

1 At the MATLAB command line, enter:

registerTestPoint(testConsole, 'DemodBitErrors', 'TxBits', 'RxBits');
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This line defines the test point, DemodBitErrors, and compares bits from
the TxBits probe to the bits from the RxBits probe. The Error Rate Test
Console calculated metrics for this test point.

2 Configure the Error Rate Test Console to run simulations for EbNo values.
Start at 2 dB and end at 10 dB, with a step size of 2 dB and M values of 2,
4, 8, and 16. At the MATLAB command line, enter:

setTestParameterSweepValues(testConsole, 'EbNo', 2:2:10)
setTestParameterSweepValues(testConsole, 'M', [2 4 8 16])

3 Set the simulation limit to the number of transmissions.

testConsole.SimulationLimitOption = 'Number of transmissions'

4 Set the maximum number of transmissions to 1000.

testConsole.MaxNumTransmissions = 1000

5 Configure the Error Rate Test Console so it uses the demodulator bit error
test point for determining the number of transmitted bits.

testConsole.TransmissionCountTestPoint = 'DemodBitErrors'

6 Run the simulation. At the MATLAB command line, enter:

run(testConsole)

7 Obtain the results of the simulation. At the MATLAB command line, enter:

grayResults = getResults(testConsole)

8 To obtain more accurate results, run the simulations for a given minimum
number of errors. In this example, you also limit the number of simulation
bits so that the simulations do not run indefinitely. At the MATLAB
command line, enter:

testConsole.SimulationLimitOption = 'Number of errors
or transmissions';
testConsole.MinNumErrors = 100;
testConsole.ErrorCountTestPoint = 'DemodBitErrors';
testConsole.MaxNumTransmissions = 1e8;
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testConsole

9 Run the simulation by entering the following at the MATLAB command
line.

run(testConsole);

10 Generate the new results in a Figure window by entering the following at
the MATLAB command line.

grayResults = getResults(testConsole);
grayResults.TestParameter2 = 'M'
semilogy(grayResults)

This script generates the following figure.
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Optimize System Performance Using Parameterized Simulations. In
the previous example, the system only utilizes the run method. Every time
the object calls the run method, which is every 3e4 bits for this simulation,
the object sets the M and SNR values. This time interval includes: obtaining
numbers from the test console, calculating intermediate values, and setting
other variables.

In contrast, the system basic API provides a setup method where the Error
Rate Test Console configures the system once for each simulation point.
This change relieves the run method from getting and setting simulation
parameters, thus reducing simulation time.

The run method of a system also creates a new modulator (hMod) and a new
demodulator (hDemod). Creating a modulator or a demodulator is much more
time consuming than just modifying a property of these objects. Create a
modulator and a demodulator object once when the system is constructed.
Then, modify its properties in the setup method of the system to speed up
the simulations.

1 Save the file MyGrayCodedModulation as
MyGrayCodedModulationOptimized.

2 In the MyGrayCodedModulationOptimized file, replace the constructor
name and the class definition name.

• Locate the following lines of code:

classdef MyGrayCodedModulation < testconsole.SystemBasicAPI
%MyGrayCodedModulation Gray coded modulation system

• Replace them with:

classdef MyGrayCodedModulationOptimized < testconsole.SystemBasicAPI
%MyGrayCodedModulationOptimized Gray coded modulation system

3 In the MyGrayCodedModulationOptimized file, replace the constructor
name.

• Locate the following lines of code:

function obj = MyGrayCodedModulation
%MyGrayCodedModulation Construct a Gray coded modulation system
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• Replace them with:

function obj = MyGrayCodedModulationOptimized
%MyGrayCodedModulationOptimized Construct a Gray
%coded modulation system

4 Move the oversampling rate definition from the run method to the setup
method.

nSamp = 1; % Oversampling rate

5 Move code related to setting M to the setupmethod. Cut the following lines
from the run method and paste to the setup method.

M = getTestParameter(obj,'M');
k = log2(M); % Number of bits per symbol

6 In the setup method, replace M with the object property M.

obj.M = getTestParameter(obj,'M');
k = log2(obj.M); % Number of bits per symbol

This change provides access to the M value from the run method.

7 Move code related to setting EbNo to the setup method. Cut the following
lines from the run method and paste to the setup method.

EbNo = getTestParameter(obj,'EbNo');

SNR = EbNo + 10*log10(k) - 10*log10(nSamp);

8 In the setup method, replace EbNo with the object property EbNo. This
change provides access to the EbNo value from the run method.

obj.EbNo = getTestParameter(obj,'EbNo');
SNR = obj.EbNo + 10*log10(k) - 10*log10(nSamp);

9 Create a new internal variable called SNR to store the calculated SNR
value. Define the SNR property as a private property; it is not a test
parameter. With this change, the system calculates SNR in the setup
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method and accesses it from the run method. Add the following lines of
code the system file, after the Test Parameters block.

%=================================================================
% Internal variables
properties (Access = private)

SNR
end

10 In the setup method, replace SNR with object property SNR.

obj.SNR = obj.EbNo + 10*log10(k) - 10*log10(nSamp);

11 In the run method, replace M with obj.M and SNR with obj.SNR.

hMod = modem.qammod(obj.M); % Create a 16-QAM modulator
yNoisy = awgn(yTx,obj.SNR,'measured');

Notice that the run method creates the QAM modulator and demodulator.

12 Move the QAM modulator and demodulator creation out of the run method.
Move following lines from the runmethod to the constructor (i.e the method
named MyGrayCodedModulationOptimized)

%% Create Modulator and Demodulator
hMod = modem.qammod(obj.M); % Create a 16-QAM modulator
hMod.InputType = 'Bit'; % Accept bits as inputs
hMod.SymbolOrder = 'Gray'; % Accept bits as inputs
hDemod = modem.qamdemod(hMod); % Create a 16-QAM based on

% the modulator

13 Create private properties called Modulator and Demodulator to store the
modulator and demodulator objects.

% Internal variables
properties (Access = private)
SNR
Modulator
Demodulator
end
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14 In the constructor method, replace hMod and hDemod with the object
property obj.Modulator and obj.Demodulator respectively.

obj.Modulator = modem.qammod(obj.M); % Create a 16-QAM modulator
obj.Modulator.InputType = 'Bit'; % Accept bits as inputs
obj.Modulator.SymbolOrder = 'Gray'; % Accept bits as inputs
obj.Demodulator = modem.qamdemod(obj.Modulator);

15 In the run method, replace hMod and hDemod with object properties
obj.Modulator and obj.Demodulator.

y = modulate(obj.Modulator,x);
z = demodulate(obj.Demodulator,yRx);

16 Locate the setup region of the file.

function setup(obj)
% SETUP Initialize the system
% SETUP(H) gets current test parameter value(s) from the test
% console and initializes system, H, accordingly.

17 Set the M value of the modulator and demodulator by adding the following
lines of code to the setup.

obj.Modulator.M = obj.M;
obj.Demodulator.M = obj.M;

18 Save the file.

19 Create an optimized system. At the MATLAB command line, enter:

myOptimSystem = MyGrayCodedModulationOptimized

20 Create an Error Rate Test Console and attach the system to the test
console. At the MATLAB command line, type:

testConsole = commtest.ErrorRate(myOptimSystem)

21 At the MATLAB command line, type:

registerTestPoint(testConsole, 'DemodBitErrors',
'TxBits', 'RxBits');
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This line defines the test point, DemodBitErrors, and compares bits from
the TxBits probe to the bits from the RxBits probe. The Error Rate Test
Console calculated metrics for this test point.

22 Configure the Error Rate Test Console to run simulations for EbNo values.
Start at 2 dB and end at 10 dB, with a step size of 2 dB and M values of 2,
4, 8, and 16. At the MATLAB command line, type:

setTestParameterSweepValues(testConsole, 'EbNo', 2:2:10)
setTestParameterSweepValues(testConsole, 'M', [2 4 8 16])

23 Configure the Error Rate Test Console so it uses the demodulator bit error
test point for determining the number of transmitted bits.

testConsole.TransmissionCountTestPoint = 'DemodBitErrors'

24 To obtain more accurate results, run the simulations for a given minimum
number of errors. In this example, you also limit the number of simulation
bits so that the simulations do not run indefinitely. At the MATLAB
command line, type:

testConsole.SimulationLimitOption = 'Number of errors
or transmissions';
testConsole.MinNumErrors = 100;
testConsole.ErrorCountTestPoint = 'DemodBitErrors';
testConsole.MaxNumTransmissions = 1e8;
testConsole

25 Run the simulation. At the MATLAB command line, type:

tic; run(testConsole); toc

MATLAB returns the following information:

Running simulations...
Elapsed time is 191.748359 seconds.

Notice that these optimization changes reduce the simulation run time
about 10%.
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26 Generate the new results in a Figure window. At the MATLAB command
line, type:

grayResults = getResults(testConsole);
grayResults.TestParameter2 = 'M'
semilogy(grayResults)

This script generates the following figure.
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Error Vector Magnitude (EVM)
Error Vector Magnitude (EVM) is a measurement of modulator or
demodulator performance in the presence of impairments. Essentially, EVM
is the vector difference at a given time between the ideal (transmitted) signal
and the measured (received) signal. If used correctly, these measurements
can help in identifying sources of signal degradation, such as: phase noise,
I-Q imbalance, amplitude non-linearity and filter distortion

These types of measurements are useful for determining system performance
in communications applications. For example, determining if an EDGE
system conforms to the 3GPP radio transmission standards requires accurate
RMS, EVM, Peak EVM, and 95th percentile for the EVM measurements.

Users can create the EVM object in two ways: using a default object or by
defining parameter-value pairs. As defined by the 3GPP standard, the unit
of measure for RMS, Maximum, and Percentile EVM measurements is a
percentile (%). For more information, see the commmeasure.EVM help page.

Measuring Modulator Accuracy

• “Overview” on page 5-117

• “Structure” on page 5-118

• “References” on page 5-121

Overview
The Communications System Toolbox provides two blocks you can use for
measuring modulator accuracy: EVM Measurement and MER Measurement.

This example tests an EDGE transmitter for system design impairments
using EVM measurements. In this example, the EVM Measurements block
compares an ideal reference signal to a measured signal, and then computes
RMS EVM, maximum EVM, and percentile EVM values. According to the
EDGE standard [1], the error vector magnitude of the received signal,
calculated relative to the transmitted waveform, should not exceed the
following values:
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EDGE Standard Measurement Specifications [2]

Measurement Mobile Station Base Transceiver
Station

Normal Extreme Normal Extreme

RMS 9% 10% 7% 8%

Peak EVM 30% 30% 22% 22%

95th Percentile EVM 15% 15% 11% 11%

This example uses the following model.

You can open this model by typing doc_evm at the MATLAB command line.

Structure
The model essentially contains three parts:

• Transmitter

5-118



Error Vector Magnitude (EVM)

• Receiver impairments

• EVM calculation

The following sections of the tutorial contain descriptions for each part of
the model.

Transmitter. The following blocks comprise the transmitter:

• Random Integer Generator

• M–PSK Modulator Baseband

• Phase/Frequency Offset

• Upsample

• Digital Filter

• I/Q Imbalance

The Random Integer Generator block simulates random data generation.
The EDGE standard specifies that the transmitter performs measurements
during the useful part of the burst – excluding tail bits – over at least 200
bursts. In this mode, the transmitter produces 435 symbols per burst (9
additional symbols account for filter delays). The Phase Offset block provides
continuous 3π/8 phase rotation to the signal. For synchronization purposes,
the Upsample block oversamples the signal by a factor of 4.

The Digital Filter block provides a GMSK pulse linearization, the main
component in a Laurent decomposition of the GMSK modulation [3]. A helper
function computes the filter coefficients and uses a direct-form FIR digital
filter to create the pulse shaping effect. The filter normalization provides
unity gain at the main tap.

The I/Q Imbalance block simulates transmitter impairments. This block adds
rotation to the signal, simulating a defect in the transmitter under test. The
I/Q amplitude imbalance is 0.5 dB, and I/Q phase imbalance is 1°.

Receiver Impairments. In this model, the Receiver Thermal Noise block
represents receiver impairments. This model assumes 290 K of thermal noise,
representing imperfections of the hardware under test.
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EVM Calculation. The EVM calculation relies upon the following blocks:

• Digital Filter

• Selector

• EVM Measurement

• Display

The EVM measurement block computes the vector difference between an
ideal reference signal and an impaired signal. The output of the digital
filter provides the Reference input for the EVM block. The output of the
Noise Temperature block provides the impaired signal at the Input port of
the EVM block.

While the block has different normalization options available, the EDGE
standard requires normalizing by the Average reference signal power.
For illustration purposes in this example, the EVM block outputs RMS,
maximum, and percentile measurement values.

Experimenting with the Model.

1 Run the model by clicking the play button in the Simulink model window.

2 Examine the output of the EVM block and compare the measurements to
the limits in the EDGE Standard Measurement Specifications table.

In this example, the EVM Measurement block computes the following:

• Worst case RMS EVM per burst: 9.77%

• Peak EVM: 18.95%

• 95th Percentile EVM:14.76%

As a result, this simulated EDGE transmitter passes the EVM test for a
Mobile Station under extreme conditions.

3 Double-click the I/Q Imbalance block.

4 Enter 2 into I/Q Imbalance (dB) and click OK.

5 Click the Play button in the Simulink model window.
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6 Examine the output of the EVM block. Then, compare the measurements
to the limits in the EDGE Standard Measurement Specifications table.

In this example, the EVM Measurement block computes the following
results:

• Worst case RMS EVM per burst: 15.15%

• Peak EVM: 29.73%

• 95th Percentile EVM: 22.55%.

These EVM values are clearly unacceptable according to the EDGE
standard. You can experiment with the other I/Q imbalance values,
examine the impact on calculations, and compare them to the values
provided in the table.

References

[1] 3GPP TS 45.004, “Radio Access Networks; Modulation,” Release 7, v7.2.0,
2008-02.

[2] 3GPP TS 45.005, “Radio Access Network; Radio transmission and
reception,” Release 8, v8.1.0, 2008-05.

[3] Laurent, Pierre. “Exact and approximate construction of digital phase
modulation by superposition of amplitude modulated pulses (AMP).” IEEE
Transactions on Communications. Vol. COM-34, #2, Feb. 1986, pp. 150-160.
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Modulation Error Ratio (MER)
Communications System Toolbox can perform Modulation Error Ratio (MER)
measurements. MER is a measure of the signal-to-noise ratio (SNR) in a
digital modulation applications. These types of measurements are useful
for determining system performance in communications applications. For
example, determining if an EDGE system conforms to the 3GPP radio
transmission standards requires accurate RMS, EVM, Peak EVM, and 95th
percentile for the EVM measurements.

The MER object is part of the commmeasure package. As defined by the DVB
standard, the unit of measure for MER is decibels (dB). For consistency, the
unit of measure for Minimum MER and Percentile MER measurements is
also in decibels. For more information, see the commmeasure.MER help page.
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Adjacent Channel Power Ratio (ACPR)
Adjacent channel power ratio (ACPR) calculations (also known as adjacent
channel leakage ratio (ACLR)), characterize spectral regrowth in a
communications system component, such as a modulator or an analog front
end. Amplifier nonlinearity causes spectral regrowth. ACPR calculations
determine the likelihood that a given system causes interference with an
adjacent channel.

Many transmission standards, such as IS-95, CDMA, WCDMA, 802.11, and
Bluetooth, contain a definition for ACPR measurements. Most standards
define ACPR measurements as the ratio of the average power in the main
channel and any adjacent channels. The offset frequencies and measurement
bandwidths (BWs) you use when obtaining measurements depends on which
specific industry standard you are using. For instance, measurements of
CDMA amplifiers involve two offsets (from the carrier frequency) of 885 kHz
and 1.98 MHz, and a measurement BW of 30 KHz.

For more information, see the commmeasure.ACPR help page.

Overview of ACPR Measurement Tutorial
The commmeasure package in the Communications System Toolbox contains an
ACPR measurement class. In this tutorial, you obtain ACPR measurements
using a WCDMA communications signal, according to the 3GPP™ TS 125.104
standard.

This example uses baseband WCDMA sample signals at the input and output
of a nonlinear amplifier. The WCDMASignal.mat file contains sample data
for use with the tutorial. This file divides the data into 25 signal snapshots
of 7e3 samples each and stores them in the columns of data matrices,
dataBeforeAmplifier and dataAfterAmplifier.

The WCDMA specification requires that you obtain all measurements using a
3.84 MHz sampling frequency.
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Creating the ACPR Object and Setting Up Measurements

1 Define the sampling frequency, load the WCDMA file, and get the data by
typing the following at the MATLAB command line:

% System sampling frequency, 3.84 MHz chip rate, 8 samples per chip
Fs = 3.84e6*8;
load WCDMASignal.mat
% Use the first signal snapshot
txSignalBeforeAmplifier = dataBeforeAmplifier(:,1);
txSignalAfterAmplifier = dataAfterAmplifier(:,1);

2 Instantiate an ACPR object and specify the sampling frequency.

hACPR = commmeasure.ACPR('Fs',Fs)

The object outputs the following:

hACPR =

Type: 'ACPR Measurement'
NormalizedFrequency: 0

Fs: 30720000
MainChannelFrequency: 0

MainChannelMeasBW: 1536000
AdjacentChannelOffset: [-3072000 3072000]
AdjacentChannelMeasBW: 1536000

MeasurementFilter: [1x1 dfilt.dffir]
SpectralEstimatorOption: 'Default'

FrequencyResolutionOption: 'Inherit from input dimensions'
FFTLengthOption: 'Next power of 2'

MaxHold: 'Off'
PowerUnits: 'dBm'
FrameCount: 0

3 Specify the main channel center frequency and measurement bandwidth.

Specify the main channel center frequency using the
MainChannelFrequency property. Then, specify the main
channel measurement bandwidth using the MainChannelMeasBW
property.
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For the baseband data you are using, the main channel center frequency
is at 0 Hz. The WCDMA standard specifies that you obtain main channel
power using a 3.84-MHz measurement bandwidth. Specify these by typing
the following.

hACPR.MainChannelFrequency = 0;
hACPR.MainChannelMeasBW = 3.84e6;

4 Specify adjacent channel offsets and measurement bandwidths.

The WCDMA standard specifies ACPR limits for four adjacent
channels, located at 5, -5, 10, -10 MHz away from the main channel
center frequency. In all cases, you obtain adjacent channel power
using a 3.84-MHz bandwidth. Specify the adjacent channel offsets
and measurement bandwidths using the AdjacentChannelOffset and
AdjacentChannelMeasBW properties.

hACPR.AdjacentChannelOffset = [-10 -5 5 10]*1e6;
hACPR.AdjacentChannelMeasBW = 3.84e6;

Notice that if the measurement bandwidths for all the adjacent channels
are equal, you specify a scalar value. If measurement bandwidths are
different, you specify a vector of measurement bandwidths with a length
equal to the length of the offset vector.

Obtaining the ACPR Measurements
You obtain ACPR measurements by calling the run method of the ACPR
object. You can also obtain the power measurements for the main and
adjacent channels. The PowerUnits property specifies the unit of measure.
The property value defaults to dBm (power ratio referenced to one milliwatt
(mW)).

1 Obtain the ACPR measurements at the amplifier input by typing the
following at the MATLAB command line:

[ACPR mainChannelPower adjChannelPower] = ...,
run(hACPR,txSignalBeforeAmplifier)

The ACPR object produces the following input measurement data:
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ACPR =

-68.6668 -54.9002 -55.0653 -68.4604

mainChannelPower =

29.5190

adjChannelPower =

-39.1477 -25.3812 -25.5463 -38.9414

2 Obtain the ACPR measurements at the amplifier output:

[ACPR mainChannelPower adjChannelPower] = ...,
run(hACPR,txSignalAfterAmplifier)

The ACPR object produces the following input measurement data:

ACPR =

-42.1625 -27.0912 -26.8785 -42.4915

mainChannelPower =

40.6725

adjChannelPower =

-1.4899 13.5813 13.7941 -1.8190

Notice the increase in ACPR values at the output of the amplifier. This
increase reflects distortion due to amplifier nonlinearity. The WCDMA
standard specifies that ACPR values be below -45 dB at +/- 5 MHz offsets,
and below -50 dB at +/- 10 MHz offsets. In this example, the signal at the
amplifier input meets the specifications while the signal at the amplifier
output does not.
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Specifying a Measurement Filter
The WCDMA standard specifies that you obtain ACPR measurements using a
root-raised-cosine filter. It also states that you measure both the main channel
power and adjacent channel powers using a matched root-raised-cosine (RRC)
filter with a roll-off factor of 0.22. You specify the measurement filter using
the MeasurementFilter property. This property value defaults to an all-pass
filter with unity gain.

The filter must be an FIR filter, contained in a dfilt object, and its
response must center at 0 Hz. The ACPR object automatically shifts and
applies the filter at each of the specified main and adjacent channel bands.
(The power measurement still falls within the bands specified by the
MainChannelMeasBW, and AdjacentChannelMeasBW properties.)

The WCDMASignal.mat file contains data that was obtained using a 96 tap
filter with a rolloff factor of 0.22.

1 Create the filter (using fdesign.pulseshaping, from the Signal Processing
Toolbox software) and obtain measurements by typing the following at
the MATLAB command line:

PulseShapeFdesign = fdesign.pulseshaping(8,...,
'Square Root Raised Cosine', 'Nsym,Beta',16,0.22);
hRRCFilter = design(PulseShapeFdesign);

2 Set this filter as the measurement filter for the ACPR object.

hACPR.MeasurementFilter = hRRCFilter;

3 Obtain the ACPR power measurements at the amplifier input.

ACPR = run(hACPR,txSignalBeforeAmplifier)

The ACPR object produces the following measurement data:

ACPR =
-71.4648 -55.5514 -55.9476 -71.3909

4 Obtain the ACPR power measurements at the amplifier output.

ACPR = run(hACPR,txSignalAfterAmplifier)
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The ACPR object produces the following measurement data:

ACPR =
-42.2364 -27.2242 -27.0748 -42.5810

Controlling the Power Spectral Estimator
By default, the ACPR object measures power using a Welch power spectral
estimator with a Hamming window and zero percent overlap. The object
uses a rectangle approximation of the integral for the power spectral
density estimates in the measurement bandwidth of interest. If you set
SpectralEstimatorOption to ’User defined’ several properties become
available, providing you control of the resolution, variance, and dynamic
range of the spectral estimates.

1 Enable the SegmentLength, OverlapPercentage, and WindowOption
properties by typing the following at the MATLAB command line:

hACPR.SpectralEstimatorOption = 'User defined'

This change allows you to customize the spectral estimates for obtaining
power measurements. For example, you can set the spectral estimator
segment length to 1024 and increase the overlap percentage to 50%,
reducing the consequent variance increase. You can also choose a window
with larger side lobe attenuation (compared to the default Hamming
window). For more information, see spectrum.welch in the Signal
Processing Toolbox User’s Guide.

2 Create a spectral estimator with a ’Chebyshev’ window and a side lobe
attenuation of 200 dB.

hACPR.SegmentLength = 1024;
hACPR.OverlapPercentage = 50;
% Choosing a Chebyshev window enables a SidelobeAtten property
% you can use to set the side lobe attenuation of the window.
hACPR.WindowOption = 'Chebyshev';
hACPR.SidelobeAtten = 200;

3 Obtain the ACPR power measurements at the amplifier output.
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ACPR = run(hACPR,txSignalAfterAmplifier)

The ACPR object produces the following measurement data:

ACPR =
-44.9399 -30.7136 -30.7670 -44.4450

Controlling the Resolution of Power Spectral Density
Measurements
When the SpectralEstimatorOption property of the ACPR object is
’Default’, you control the power spectral measurement resolution using
the FrequencyResolutionOption property. Set this property to ’Inherit
from input dimensions’ to obtain the maximum resolution according to the
input data length. Setting the FrequencyResolutionOption property to
’Specify via property’ sets the resolution to the value you specified for the
FrequencyResolution property. Reducing the frequency resolution reduces
the variance of the power spectral density estimates used to compute
average power. The tradeoff is an increase in power leakage from frequency
components outside of the measurement bandwidth.

1 Set SpectralEstimatorOption back to its default settings, making the
FrequencyResolutionOption relevant, by typing the following at the
MATLAB command line:

hACPR.SpectralEstimatorOption = 'Default';
hACPR.FrequencyResolutionOption = 'Specify via property'

Now that the property is relevant, you can specify a frequency value in
Hertz. (The larger this value, the smaller the resolution.)

2 Specify 20.4 kHz for the frequency value.

hACPR.FrequencyResolution = 20.4e3;

3 Measure ACPR for the 25 signal snapshots at the amplifier output and
compute the variance of the measurements.

for idx = 1:25
ACPR(idx,:) = run(hACPR,dataAfterAmplifier(:,idx));

end
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var(ACPR)

MATLAB returns the following variance values for the ACPR
measurements:

ans =

0.5776 1.4143 1.3096 0.7598

4 For comparison, set the resolution to 650 kHz, measure ACPR for 25
signal snapshots at the amplifier output, and compute the variance of the
measurements:

hACPR.FrequencyResolution = 650e3;
for idx = 1:25

ACPR(idx,:) = run(hACPR,dataAfterAmplifier(:,idx));
end
var(ACPR)

MATLAB returns the following variance values for the ACPR
measurements:

ans =
0.3393 0.7019 0.6798 0.4414

In this example, lowering the resolution (from 20.4 to 650 KHz) also lowers
the ACPR measurement variance.

Measure Power Using the Max-Hold Option.
Some communications standards specify using max-hold spectrum power
measurements when computing ACPR values. Such calculations compare the
current power spectral density vector estimation to the previous max-hold
accumulated power spectral density vector estimation. When obtaining
max-hold measurements, the object obtains the power spectral density vector
estimation using the current input data. It obtains the previous max-hold
accumulated power spectral density vector from the previous call to the run
method. The object uses the maximum values at each frequency bin for
calculating average power measurements. A call to the reset method clears
the max-hold spectrum.
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1 Accumulate max-hold spectra for 25 amplifier output data snapshots and
get ACPR measurements by typing the following at the MATLAB command
line:

% Get ACPR measurements after accumulating max-hold spectra for 25 ampl
% output data snapshots.
% First accumulate spectral estimates for 24 data snapshots
hACPR.MaxHold = 'On';
for idx = 1:24

run(hACPR,dataAfterAmplifier(:,idx));
end
ACPR = run(hACPR,dataAfterAmplifier(:,25))

The ACPR object produces the following output data:

ACPR =

-42.7487 -27.0209 -26.8726 -42.4740

2 The frame count property of the ACPR object reflects the number of signal
snapshots the object processes.

hACPR.FrameCount

The ACPR object produces the following output data:

ans =

25

3 Reset the ACPR object.

reset(hACPR)
hACPR.FrameCount

the ACPR object produces the following output data:

ans =

0
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Plotting the Signal Spectrum
Use the MATLAB software to plot the power spectral density of the WCDMA
signals at the input and output of the nonlinear amplifier. The plot allows you
to visualize the spectral regrowth effects intrinsic to amplifier nonlinearity.
Notice how the measurements reflect the spectral regrowth. (Note: the
following code is just for visualizing signal spectra; it has nothing to do with
obtaining the ACPR measurements).

hPsd = spectrum.welch('Hamming',1024);
hopts = psdopts(hPsd);
set(hopts,'SpectrumType','twosided','NFFT',1024,'Fs',Fs,...,
'CenterDC',true)
PSD1 = psd(hPsd,txSignalBeforeAmplifier,hopts);
PSD2 = psd(hPsd,txSignalAfterAmplifier,hopts);
data = dspdata.psd([PSD1.Data PSD2.Data],PSD1.Frequencies,'Fs',Fs);
plot(data)
legend('Amplifier input', 'Amplifier output')
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Complementary Cumulative Distribution Function CCDF
The Communications System Toolbox software measures the probability of a
signal’s instantaneous power to be a specified level above its average power
using the comm.CCDF System object.
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• “Constellation Visualization” on page 6-2

• “Eye Diagram Analysis” on page 6-15

• “Scatter Plots” on page 6-22

• “Channel Visualization” on page 6-43



6 Visual Analysis

Constellation Visualization

In this section...

“Observe How Modulator Design Changes Affect a Signal Constellation”
on page 6-3

“Plot Signal Constellation” on page 6-34

Some linear modulator blocks provide the capability to visualize a signal
constellation right from the block mask. This Constellation Visualization
feature allows you to visualize a signal constellation for specific block
parameters. The following blocks support constellation visualization:

• BPSK Modulator Baseband

• QPSK Modulator Baseband

• M-PSK Modulator Baseband

• M-PAM Modulator Baseband

• Rectangular QAM Modulator Baseband

• General QAM Modulator Baseband

Note To display Fixed-Point settings, you need a Fixed-Point Toolbox™
user license.

Clicking View Constellation on a linear modulator block mask, plots the
signal constellation using the block’s mask parameters. If you set a modulator
block to output single or fixed-point data types, clicking View Constellation
generates two signal constellations plots overlaid on each other.

• One plot provides a reference constellation using double precision data type

• The other plot provides data whose data type selection is defined in the
block mask

The title of the plot indicates the values of significant parameters. You can
use the full array of MATLAB plot tools to manipulate plot figures. Selecting
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Inherit via back propagation for the Output Data Type generates a
constellation plot with double as the Output data type.

Observe How Modulator Design Changes Affect a
Signal Constellation
In this tutorial, you will make changes to the modulator block. Without
actually applying the changes to the model, you will observe how these
changes effect the signal constellation.

1 Open the constellation visualization tutorial constellation
visualization tutorial model by typing doc_CVTutorialModel at the
MATLAB command line.

2 Double-click the Rectangular QAM Modulator Baseband block.

3 Next, click View Constellation
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The constellation plot shows that the constellation:

• Uses a 16-QAM modulation scheme

• Uses Binary constellation mapping

• Has 0 degree phase offset

• Has a minimum distance between two constellation points of 2

The constellation plot also shows that the signal has a double precision
data type. Because the Input type is integer, the constellation has integer
symbol mapping.

4 From the block mask, select Bit for the Input type parameter.

5 Select Gray for the Constellation ordering parameter.

6 Click View Constellation, and observe the results. Even though you did
not click Apply, making these changes part of the model, the constellation
plot still updates. The plot indicates gray constellation ordering using a bit
representation of symbols.
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7 You can overlay and compare the effect that two different data type
selections have on a signal constellation. For example, you can compare
the effect of changing Output data type from double to Fixed-point
on the signal constellation.

To compare settings, perform the following tasks:

• Click the Data Types tab.

• Set the Output data type parameter to Fixed-point.

• Set the Output word length parameter to 16.

• Set the Set Output fraction length to parameter to Best precision.

8 Click Main tab, and then click View Constellation.
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The plot overlays the fixed-point constellation on top of the double-precision
constellation.

9 You can specify a block parameter value using variables defined in the
MATLAB workspace. To define a variable, type M=32 in the MATLAB
workspace.

Note The model workspace in Simulink has priority over the base
workspace in MATLAB.

10 In the block mask, click the Main tab, and then type M for the M-ary
number parameter. This parameter allows the block to use the variable
value you defined in MATLAB workspace.
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11 Click the Data Types tab and then select double for the Output data
type parameter.

12 Click the Main tab. Then, click the View Constellation button and
observe the results.

13 You can also use the Constellation Visualization feature while a simulation
is running. Type M=16 in the MATLAB workspace, select Integer for the
Input type and click Apply.

14 Simulate the model by clicking Start in the Simulink model window.
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15 While the simulation is running, click View Constellation. Compare the
signal constellation to the scatter plot generated in the previous step.
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16 End the simulation by clicking the Stop button in the Simulink model
window.

The Constellation Visualization feature provides full access to the MATLAB
plotting capabilities, including: capturing a figure, saving a figure in
multiple file formats, changing display settings, or saving files for archiving
purposes. To capture a figure, select Edit > Copy Figure.

Using this tutorial, you have generated numerous constellation plots. If
you close the Simulink model or delete the modulator block from the model,
all the plots will close.

Tip If you capture a figure you want to archive for future use, save the
figure before closing the model.
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17 Close the Simulink model, and observe that all of the constellation figures
also close.

Plotting Signal Constellations
To plot the signal constellation associated with a modulation process, follow
these steps:

1 If the alphabet size for the modulation process is M, then create the signal
[0:M-1]. This signal represents all possible inputs to the modulator.

2 Use the appropriate modulation function to modulate this signal. If
desired, scale the output. The result is the set of all points of the signal
constellation.

3 Apply the scatterplot function to the modulated output to create a plot.

Examples of Signal Constellation Plots
The following examples produce plots of signal constellations:

• “Create Scatter Plot for PSK Constellation with 16 Points” on page 6-34

• “Create Scatter Plot for QAM Constellation with 32 Points” on page 6-36

• “Create Scatter Plot for Gray-Coded Constellation with 8 Points” on page
6-37

• “Customized Constellation for QAM” on page 6-13

The reference entries for the modnorm and genqammod functions provide
additional examples.

Constellation for 16-PSK. The code below plots a PSK constellation having
16 points.

% Use 16-PSK modulation.
hMod = modem.pskmod(16);

% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',hMod.Constellation);
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% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = 'rd';
% Add symbol labels
hold on;
k=log2(hMod.M);
for jj=1:hMod.M

text(real(hMod.Constellation(jj))-0.15,...,
imag(hMod.Constellation(jj))+0.15,...
dec2base(hMod.SymbolMapping(jj),2,k));

end
hold off;

Constellation for 32-QAM. The code below plots a QAM constellation
having 32 points and a peak power of 1 watt. The example also illustrates
how to label the plot with the numbers that form the input to the modulator.

% Create 32-QAM modulator
hMod = modem.qammod(32);
% Create a scatter plot
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scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...
'Constellation',hMod.Constellation);

% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = 'rd';
% Add symbol labels
hold on;
for jj=1:hMod.M

text(real(hMod.Constellation(jj)),imag(hMod.Constellation(jj)),...
[' ' num2str(hMod.SymbolMapping(jj))]);

end
hold off;

Gray-Coded Signal Constellation. The example below plots an 8-QAM
signal Gray-coded constellation, labeling the points using binary numbers so
you can verify visually that the constellation uses Gray coding.

% Create 8-QAM Gray encoded modulator
hMod = modem.qammod('M',8,'SymbolOrder','Gray');
% Create a scatter plot
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scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...
'Constellation',hMod.Constellation);

% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = '.';
% Add symbol labels
hold on;
k=log2(hMod.M);
for jj=1:hMod.M

text(real(hMod.Constellation(jj))+0.15,...,
imag(hMod.Constellation(jj)),...
dec2base(hMod.SymbolMapping(jj),2,k));

end
hold off;

Customized Constellation for QAM. The code below describes and plots a
constellation with a customized structure.

% Describe constellation.
inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2];
inphase = [inphase; -inphase]; inphase = inphase(:);
quadr = [quadr; -quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;
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% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',const);
% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = '*';
title('Customized Constellation for QAM');
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Eye Diagram Analysis
In digital communications, an eye diagram provides a visual indication of how
noise might impact system performance.

Use the EyeScope tool to examine the data that an eye diagram object
contains. EyeScope shows both the eye diagram plot and measurement
results in a unified, graphical environment. You can import, and compare
measurement results for, multiple eye diagram objects.

For a description of eye diagrams, refer to ’Eye Diagrams’ in the
Communications System Toolbox User’s Guide.

For information about constructing an eye diagram object, running a
simulation, collecting data, and analyzing the simulated data, refer to the
’Eye Diagram Measurements’ demo. The Eye Diagram and Scatter Plot demo
covers eye diagram analysis applied to a communications system.

For a complete list of EyeScope measurements definitions, refer to
’Measurements’ in the Communications System Toolbox User’s Guide.

For instructions on how to perform basic EyeScope tasks, see the EyeScope
reference page.

Import Eye Diagram Objects and Compare
Measurement Results
This section provides a step-by-step introduction for using EyeScope to import
eye diagram objects, select and change which eye diagram measurements
EyeScope displays, compare measurement results, and print a plot object.

MATLAB software includes a set of data containing nine eye diagram objects,
which you can import into EyeScope. While EyeScope can import eye diagram
objects from either the workspace or a MAT-file, this introduction covers
importing from the workspace. EyeScope reconstructs the variable names it
imports to reflect the origin of the eye diagram object.

1 Type load commeye_EyeMeasureDemoData at the MATLAB command line
to load nine eye diagram objects into the MATLAB workspace.
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2 Type eyescope at the MATLAB command line to start the EyeScope tool.

3 In the EyeScope window, select File > Import Eye Diagram Object.

The Import eye diagram object dialog box opens.

In this window, theWorkspace contents panel displays all eye diagram
objects available in the source location.

4 Select eyeObj1 and click Import. EyeScope imports the object, displaying
an image in the object plot and listing the file name in the Eye diagram
objects list.

Note Object names associated with eye diagram objects that you import
from the work space begin with the prefix ws.
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Review the image and note the default Eye diagram object settings and
Measurements selections. For more information, refer to the EyeScope
reference page.

5 In the EyeScope window, click the Import button.

6 From the Import eye diagram object window, click to select eyeObj5 then
click the Import button.

• The EyeScope window changes, displaying a new plot and adding
ws_eyeObj5 to the Eye diagram objects list. EyeScope displays the
same settings and measurements for both eye diagram objects.

• You can switch between the eyediagram plots EyeScope displays by
clicking on an object name in the Eye diagram object list.
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• Next, click ws_eyeObj1 and note the EyeScope plot and measurement
values changes.

7 To change or remove measurements from the EyeScope display:

• Select Options > Measurements View. The Configure
measurement view shuttle control opens.

• Hold down the <Ctrl> key and click to select Vertical Opening, Rise
Time, Fall Time, Eye SNR. Then click Remove.

8 From the left side of the shuttle control, select Crossing Time and
Crossing Amplitude and then click Add. To display EyeScope with these
new settings, click OK. EyeScope’sMeasurement region displays Crossing
Time and Crossing Amplitude at the bottom of the Measurements section.

9 Change the list order so that Crossing Time and Crossing Amplitude
appear at the top of the list.

• Select Options > Measurements View.
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• When the Configure measurement view shuttle control opens, hold
down the <Ctrl> key and click to select Crossing Time and Crossing
Amplitude.

• Click theMove Up button until these selections appear at the top of the
list. Then, click OK

10 Select File > Save session as and then type a file name in the pop-up
window.

11 Import ws_eyeObj2, ws_eyeObj3, and ws_eyeObj4. EyeScope now
contains eye diagram objects 1, 5, 2, 3, and 4 in the list.

12 Select ws_eyeObj5, and click the delete button.

13 Click File > Import Eye Diagram Object, and select ws_eyeObj5.

14 To compare measurement results for multiple eye diagram objects, click
View > Compare Measurement Results View.
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In the data set, random jitter increases from experiment 1 to experiment 5,
as you can see in both the table and plot figure.

15 To include any data from the Measurements selection you chose earlier in
this procedure, use theMeasurement selector. Go to theMeasurement
selector and select, the Total Jitter check box. The object plot updates to
display the additional measurements.
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You can also remove measurements from the plot display. In the
Measurements selector, select the check boxes for Random Jitter
and Deterministic Jitter. The object plot updates, removing these two
measurements.

16 To print the plot display, select File > Print to Figure. From Figure
window, click the print button.
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Scatter Plots

In this section...

“View Signals Using Scatter Plots” on page 6-22

“Plot Signal Constellation” on page 6-34

“Create Scatter Plot for PSK Constellation with 16 Points” on page 6-34

“Create Scatter Plot for QAM Constellation with 32 Points” on page 6-36

“Create Scatter Plot for Gray-Coded Constellation with 8 Points” on page
6-37

“Create Scatter Plot For User-Defined Constellation” on page 6-39

“Illustrate How RF Impairments Blocks Distort a Signal” on page 6-40

A scatter plot of a signal shows the signal’s value at a given decision point.
In the best case, the decision point should be at the time when the eye of the
signal’s eye diagram is the most widely open.

To produce a scatter plot from a signal, use commscope.ScatterPlot.

Scatter plots are often used to visualize the signal constellation associated
with digital modulation. For more information, see Plotting Signal
Constellations. A scatter plot can be useful when comparing system
performance to a published standard, such as 3GPP or DVB standards.

The scatter plot feature is part of the commscope package. Users can
create the scatter plot object in two ways: using a default object or
by defining parameter-value pairs. For more information, see the
commscope.ScatterPlot help page.

View Signals Using Scatter Plots
In this example, you will observe the received signals for a QPSK modulated
system. The output symbols are pulse shaped, using a raised cosine filter.

1 Create a QPSK modulator object. Type the following at the MATLAB
command line:
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hMod = modem.pskmod('M', 4, 'PhaseOffset', pi/4);

2 Create an upsampling filter, with an upsample rate of 16. Type the
following at the MATLAB command line:

Rup = 16; % up sampling rate
hFilDesign = fdesign.pulseshaping(Rup,'Raised Cosine', ...
'Nsym,Beta',Rup,0.50);
hFil = design(hFilDesign);

3 Create the transmit signal. Type the following at the MATLAB command
line:

d = randi([0 hMod.M-1], 100, 1); % Generate data symbols
sym = modulate(hMod, d); % Generate modulated symbols
xmt = filter(hFil, upsample(sym, Rup));

4 Create a scatter plot and set the samples per symbol to the upsampling rate
of the signal. Type the following at the MATLAB command line:

hScope = commscope.ScatterPlot
hScope.SamplesPerSymbol = Rup;

In this simulation, the absolute sampling rate or symbol rate is not
specified. Use the default value for SamplingFrequency, which is 8000.
This results in 2000 symbols per second symbol rate.

5 Set the constellation value of the scatter plot to the expected constellation.
Type the following at the MATLAB command line:

hScope.Constellation = hMod.Constellation;

6 Since the pulse shaping filter introduces a delay, discard these transient
values by setting MeasurementDelay to the group delay of the filter,
which is four symbol durations or 4/Rs seconds. Type the following at the
MATLAB command line:

groupDelay = (hFilDesign.NumberOfSymbols/2);
hScope.MeasurementDelay = groupDelay /hScope.SymbolRate;

7 Update the scatter plot with transmitted signal by typing the following at
the MATLAB command line:
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update(hScope, xmt)

The Figure window updates, displaying the transmitted signal.

8 Display the ideal constellation and evaluate how closely it matches the
transmitted signal. To display the ideal constellation, type the following at
the MATLAB command line:

hScope.PlotSettings.Constellation = 'on';
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The Figure window updates, displaying the ideal constellation and the
transmitted signal.

9 One way to create a better match between the two signals is to normalize
the filter. Normalize the filter by typing the following at the MATLAB
command line:

hFil.Numerator = hFil.Numerator / max(hFil.Numerator);

10 Refilter the signal using a normalized filter.

xmt = filter(hFil, upsample(sym, Rup));

11 Reset the scope before displaying the transmitted signal. Resetting the
scope also resets the counter for measurement delay, discarding the
transient filter values. To reset the scope, type the following at the
MATLAB command line:
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reset(hScope)

12 Update the scatter plot so it displays the signal.

update(hScope, xmt)

The match between the ideal constellation points and the transmitted
signal is nearly identical.

13 To view the transmitted signal more clearly, turn off the ideal constellation
by clicking Constellation in the Figure window.
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The Figure window updates, displaying only the transmitted signal.

14 View the signal trajectory. Type the following at the MATLAB command
line:

hScope.PlotSettings.SignalTrajectory = 'on';
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The Figure window updates, displaying the trajectory. An alternate way to
display the signal trajectory is to click the Signal Trajectory.

15 Change the line style. Type the following at the MATLAB command line:

hScope.PlotSettings.SignalTrajectoryStyle = ':m';
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The Figure window updates, changing the line style making up the signal
trajectory.

16 Autoscale the scatter plot display to fit the entire plot. Type the following
at the MATLAB command line:

autoscale(hScope)
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The Figure window updates. An alternate way to autoscale the fit is to
click the Autoscale Axes button.

17 Create a noisy signal by Passing xmt through an AWGN channel. Type the
following at the MATLAB command line:

rcv = awgn(xmt, 20, 'measured'); % Add AWGN

18 Send the received signal to the scatter plot. Before sending the signal,
reset the scatter plot to remove the old data. Type the following at the
MATLAB command line:

reset(hScope)
update(hScope, rcv)
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The Figure window updates, displaying the noisy signal.

19 Turn off the signal trajectory by clicking Signal Trajectory in the Figure
window.
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The Figure window updates, displaying the signal plot without the signal
trajectory. An alternate way to turn off the signal trajectory is typing the
following at the MATLAB command line:

hScope.PlotSettings.SignalTrajectory = 'off';

20 View the constellation by clicking Constellation in the Figure window.
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The Figure window updates, displaying both the ideal constellation and
the transmitted signal. An alternate way to view the constellation is by
typing the following at the MATLAB command line:

hScope.PlotSettings.Constellation = 'on';

21 Print the scatter plot by making the following selection in the Figure
window: File > Print
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When you print the scatter plot, you print the axes, not the entire GUI.

Plot Signal Constellation
To plot the signal constellation associated with a modulation process, follow
these steps:

1 If the alphabet size for the modulation process is M, then create the signal
[0:M-1]. This signal represents all possible inputs to the modulator.

2 Use the appropriate modulation function to modulate this signal. If
desired, scale the output. The result is the set of all points of the signal
constellation.

3 Apply the scatterplot function to the modulated output to create a plot.

Create Scatter Plot for PSK Constellation with 16
Points
The code below plots a PSK constellation having 16 points.

% Use 16-PSK modulation.
hMod = modem.pskmod(16);
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% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',hMod.Constellation);
% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = 'rd';
% Add symbol labels
hold on;
k=log2(hMod.M);
for jj=1:hMod.M

text(real(hMod.Constellation(jj))-0.15,...,
imag(hMod.Constellation(jj))+0.15,...
dec2base(hMod.SymbolMapping(jj),2,k));

end
hold off;
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Create Scatter Plot for QAM Constellation with 32
Points
The code below plots a QAM constellation having 32 points and a peak power
of 1 watt. The example also illustrates how to label the plot with the numbers
that form the input to the modulator.

% Create 32-QAM modulator
hMod = modem.qammod(32);
% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',hMod.Constellation);
% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = 'rd';
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% Add symbol labels
hold on;
for jj=1:hMod.M

text(real(hMod.Constellation(jj)),imag(hMod.Constellation(jj)),...
[' ' num2str(hMod.SymbolMapping(jj))]);

end
hold off;

Create Scatter Plot for Gray-Coded Constellation with
8 Points
The example below plots an 8-QAM signal Gray-coded constellation,
labeling the points using binary numbers so you can verify visually that the
constellation uses Gray coding.

% Create 8-QAM Gray encoded modulator
hMod = modem.qammod('M',8,'SymbolOrder','Gray');
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% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',hMod.Constellation);
% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = '.';
% Add symbol labels
hold on;
k=log2(hMod.M);
for jj=1:hMod.M

text(real(hMod.Constellation(jj))+0.15,...,
imag(hMod.Constellation(jj)),...
dec2base(hMod.SymbolMapping(jj),2,k));

end
hold off;
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Create Scatter Plot For User-Defined Constellation
The code below describes and plots a constellation with a customized
structure.

% Describe constellation.
inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];
quadr = [1 1 0 2 1 1 2 2];
inphase = [inphase; -inphase]; inphase = inphase(:);
quadr = [quadr; -quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;

% Create a scatter plot
scatterPlot = commscope.ScatterPlot('SamplesPerSymbol',1,...

'Constellation',const);
% Show constellation
scatterPlot.PlotSettings.Constellation = 'on';
scatterPlot.PlotSettings.ConstellationStyle = '*';
title('Customized Constellation for QAM');

6-39



6 Visual Analysis

Illustrate How RF Impairments Blocks Distort a Signal
This example simulates RF impairments for a signal that was modulated
using differential quaternary phase shift keying (DQPSK). Open the example
model by typing doc_receiverimpairments_dqpsk at the MATLAB command
line.

Overview of the Model
The model does the following:

• Modulates a random signal using DQPSK modulation.

• Applies impairments to the signal using the blocks from the RF
Impairments library.
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• Forks the signal into two paths, and processes one path with an automatic
gain control (AGC) to compensate for the free space path loss and the I/Q
imbalance.

• Displays the trajectory of the signal with AGC and the trajectory of the
signal without AGC.

• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of
the signals with and without AGC, as shown in the following figure.

Signal With (Left) and Without (Right) AGC

The trajectory of the signal with AGC more closely matches the undistorted
trajectory for DQPSK, shown in the following figure, than does than the signal
without AGC. Consequently, the error rate for the signal with AGC is much
lower than the error rate for the signal without AGC.
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In this example, the error rate for the demodulated signal without AGC
is primarily caused by free space path loss and I/Q imbalance. The QPSK
modulation minimizes the effects of the other impairments.
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Channel Visualization
Communications System Toolbox software provides a plotting function that
helps you visualize the characteristics of a fading channel using a GUI. See
“Fading Channels” on page 4-6 for a description of fading channels and objects.

To open the channel visualization tool, type plot(h) at the command line,
where h is a channel object that contains plot information. To populate a
channel object with plot information, run a signal through it after setting
its StoreHistory property to true.

For example, the following code opens the channel visualization tool showing
a three-path Rayleigh channel through which a random signal is passed:

% Three-Path Rayleigh channel
h = rayleighchan(1/100000, 130, [0 1.5e-5 3.2e-5], [0, -3, -3]);
tx = randint(500, 1, 2); % Random bit stream
dpskSig = dpskmod(tx, 2); % DPSK signal
h.StoreHistory = true; % Allow states to be stored
y = filter(h, dpskSig); % Run signal through channel
plot(h); % Call Channel Visualization Tool
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See “Examples of Using the Channel Visualization Tool” on page 4-45 for the
basic usage cases of the channel visualization tool.

The Channel Visualization GUI
The Visualization pull-down menu allows you to choose the visualization
method. See “Visualization Options” on page 6-45 for details.

The Frame count counter shows the index of the current frame. It shows the
number of frames processed by the filter method since the channel object was
constructed or reset. A frame is a vector of M elements, interpreted to be M
successive samples that are uniformly spaced in time, with a sample period
equal to that specified for the channel.

The Sample index slider control indicates which channel snapshot is
currently being displayed, while the Pause button pauses a running
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animation until you click it again. The slider control and Pause button apply
to all visualizations except the Doppler Spectrum.

The Animation pull-down menu allows you to select how you want to display
the channel snapshots within each frame. Setting this to Slow makes the
tool show channel snapshots in succession, starting at the sample set by the
Sample index slider control. Selecting Medium or Fast makes the tool show
fewer uniformly spaced snapshots, allowing you to go through the channel
snapshots more rapidly. Selecting Interframe only (the default selection)
prevents automatic animation of snapshots within the same frame. The
Animation menu applies to all visualizations except the Doppler Spectrum.

Visualization Options
The channel visualization tool plots the characteristics of a filter in various
ways. Simply choose the visualization method from the Visualization menu,
and the plot updates itself automatically.

The following visualization methods are currently available:

Impulse Response (IR). This plot shows the magnitudes of two impulse
responses: the multipath response (infinite bandwidth) and the bandlimited
channel response.
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The multipath response is represented by stems, each corresponding to one
multipath component. The component with the smallest delay value is shown
in red, and the component with the largest delay value is shown in blue.
Components with intermediate delay values are shades between red and blue,
becoming more blue for larger delays.

The bandlimited channel response is represented by the green curve. This
response is the result of convolving the multipath impulse response, described
above, with a sinc pulse of period, T, equal to the input signal’s sample period.

The solid green circles represent the channel filter response sampled at rate
1/T. The output of the channel filter is the convolution of the input signal
(sampled at rate 1/T) with this discrete-time FIR channel filter response. For
computational speed, the response is truncated.

The hollow green circles represent sample values not captured in the channel
filter response that is used for processing the input signal.

Note that these impulse responses vary over time. You can use the slider to
visualize how the impulse response changes over time for the current frame
(i.e., input signal vector over time).
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Frequency Response (FR). This plot shows the magnitude (in dB) of the
frequency response of the multipath channel over the signal bandwidth.

As with the impulse response visualization, you can visualize how this
frequency response changes over time.
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IR Waterfall. This plot shows the evolution of the magnitude impulse
response over time.

It shows 10 snapshots of the bandlimited channel impulse response within
the last frame, with the darkest green curve showing the current response.

The time offset is the time of the channel snapshot relative to the current
response time.
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Phasor Trajectory. This plot shows phasors (vectors representing magnitude
and phase) for each multipath component, using the same color code that was
used for the impulse response plot.

The phasors are connected end to end in order of path delay, and the
trajectory of the resultant phasor is plotted as a green line. This resultant
phasor is referred to as the narrowband phasor.

This plot can be used to determine the impact of the multipath channel
on a narrowband signal. A narrowband signal is defined here as having
a sample period much greater than the span of delays of the multipath
channel (alternatively, a signal bandwidth much smaller than the coherence
bandwidth of the channel). Thus, the multipath channel can be represented
by a single complex gain, which is the sum of all the multipath component
gains. When the narrowband phasor trajectory passes through or near the
origin, it corresponds to a deep narrowband fade.

6-49



6 Visual Analysis

Multipath Components. This plot shows the magnitudes of the multipath
gains over time, using the same color code as that used for the multipath
impulse response.

The triangle marker and vertical dashed line represent the start of the
current frame. If a frame has been processed previously, its multipath gains
may also be displayed.
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Multipath Gain. This plot shows the collective gains for the multipath
channel for three signal bandwidths.

A collective gain is the sum of component magnitudes, as explained in the
following:

• Narrowband (magenta dots): This is the magnitude of the narrowband
phasor in the above trajectory plot. This curve is sometimes referred to
as the narrowband fading envelope.

• Current signal bandwidth (dashed blue line): This is the sum of the
magnitudes of the channel filter impulse response samples (the solid green
dots in the impulse response plot). This curve represents the maximum
signal energy that can be captured using a RAKE receiver. Its value (or
metrics, such as theoretical BER, derived from it) is sometimes referred to
as the matched filter bound.

• Infinite bandwidth (solid red line): This is the sum of the magnitudes of the
multipath component gains.

In general, the variability of this multipath gain, or of the signal fading,
decreases as signal bandwidth is increased, because multipath components
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become more resolvable. If the signal bandwidth curve roughly follows the
narrowband curve, you might describe the signal as narrowband. If the signal
bandwidth curve roughly follows the infinite bandwidth curve, you might
describe the signal as wideband. With the right receiver, a wideband signal
exploits the path diversity inherent in a multipath channel.

Doppler Spectrum. This plot shows up to two Doppler spectra.

The first Doppler spectrum, represented by the dashed red line, is a theoretical
spectrum based on the Doppler filter response used in the multipath channel
model. In the preceding plot, the theoretical Doppler spectrum used for the
multipath channel model is known as the Jakes spectrum. Note that the
plotted Doppler spectrum is normalized to have a total power of 1. This
Doppler spectrum is used to determine a Doppler filter response. For practical
purposes, the Doppler filter response is truncated, which has the effect of
modifying the Doppler spectrum, as shown in the plot.

The second Doppler spectrum, represented by the blue dots, is determined
by measuring the power spectrum of the multipath fading channel as the
model generates path gains. This measurement is meaningful only after
enough path gains have been generated. The title above the plot reports how
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many samples need to be processed through the channel before either the first
Doppler spectrum or an updated spectrum can be plotted.

The Path Number edit box allows you to visualize the Doppler spectrum of
the specified path. The value entered in this box must be a valid path number,
i.e., between 1 and the length of the PathDelays vector property. Once you
change the value of this field, the new Doppler spectrum will appear as soon
as the processing of the current frame has ended.

If the measured Doppler spectrum is a good approximation of the theoretical
Doppler spectrum, the multipath channel model has generated enough fading
gains to yield a reasonable representation of the channel statistics. For
instance, if you want to determine the average BER of a communications link
with a multipath channel and you want a statistically accurate measure of
this average, you may want to ensure that the channel has processed enough
samples to yield at least one Doppler spectrum measurement.

It is possible that a multipath channel (e.g., a Rician channel) can have both
specular (line-of-sight) and diffuse components. In such a case, the Doppler
spectrum would have both a line component and a wideband component.
The channel visualization tool only shows the wideband component for the
Doppler spectrum.

Unlike other visualizations, the Doppler spectrum visualization does
not support animation. Because there is no intraframe data to plot, the
visualization tool only updates the channel statistics at the end of each frame
and therefore cannot pause in the middle of a frame. If you switch to the
Doppler spectrum visualization from a different visualization that is in pause
mode, the Pause button is subsequently disabled. Disabling pause avoids
interaction problems between the Doppler spectrum visualization and other
animation-style visualizations.

Scattering Function. This plot shows the Doppler spectra of each path
versus the path delays, using the same color code as that used for the
multipath impulse response.
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The principle of operation of the Scattering Function plot is similar to that of
the Doppler Spectrum plot. The main difference is that the Doppler spectra
on this plot are not normalized as they are on the Doppler Spectrum plot, in
order to better visualize the power delay profile.

Composite Plots. Several composite plots are also available. These are
chosen by selecting the following from the Visualization pull-down menu:

• IR and FR for impulse response and frequency response plots.

• Components and Gain for multipath components and multipath gain plots.

• Components and IR for multipath components and impulse response plots.

• Components, IR, and Phasor for multipath components, impulse
response, and phasor trajectory plots.
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Visualize Samples Within a Frame
This example shows how to visualize samples within a frame through
animation. The following lines of code create a Rayleigh channel and open
the channel visualization tool:

% Create a fast fading channel
h = rayleighchan(1e-4, 100, [0 1.1e-4], [0 0]);

h.StoreHistory = 1; % Allow states to be stored
y = filter(h, ones(100,1)); % Process samples through channel
plot(h); % Open channel visualization tool

After selecting a visualization option and a speed in the Animation menu,
move the Sample index slider control all the way to the left and click
Resume. The slider control moves by itself during animation. The sample
index increments automatically to show which snapshot you are visualizing.

You can also move the slider control and glance through the samples of the
frame as you like.

Animate Snapshots Across Frames
This example shows how to animate snapshots across frames. The following
lines of code call the filter and plot methods within a loop to accomplish this:

Ts = 1e-4; % Sample period (s)
fd = 100; % Maximum Doppler shift

% Path delay and gains
tau = [0.1 1.2 2.3 6.2 11.3]*Ts;
PdB = linspace(0, -10, length(tau)) - length(tau)/20;

nTrials = 10000; % Number of trials
N = 100; % Number of samples per frame

h = rayleighchan(Ts, fd, tau, PdB); % Create channel object
h.NormalizePathGains = false;
h.ResetBeforeFiltering = false;
h.StoreHistory = 1;
h % Show channel object
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% Channel fading simulation
for trial = 1:nTrials

x = randint(10000, 1, 4);
dpskSig = dpskmod(x, 4);
y = filter(h, dpskSig);
plot(h);
% The line below returns control to the command line in case
% the GUI is closed while this program is still running
if isempty(findobj('name', 'Multipath Channel')), break; end;

end

While the animation is running, you can move the slider control and change
the sample index (which also makes the animation pause). After clicking
Resume, the plot continues to animate.

The property ResetBeforeFiltering needs to be set to false so that the state
information in the channel is not reset after the processing of each frame.
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7 Code Generation

Understanding Code Generation

Code Generation with the Simulink Coder Product
You can use the DSP System Toolbox, Simulink® Coder™, and Embedded
Coder™ products together to generate code that you can use to implement
your model for a practical application. For instance, you can create an
executable from your Simulink model to run on a target chip.

This chapter introduces you to the basic concepts of code generation
using these tools. For more information on code generation, see “Building
Executables” in the Simulink Coder documentation

Shared Library Dependencies
In general, the code you generate from DSP System Toolbox blocks is portable
ANSI® C code. After you generate the code, you can deploy it on another
machine. For more information on how to do so, see “Relocating Code to
Another Development Environment” in the Simulink Coder documentation.

There are a few DSP System Toolbox blocks that generate code with limited
portability. These blocks use precompiled shared libraries, such as DLLs, to
support I/O for specific types of devices and file formats. To find out which
blocks use precompiled shared libraries, open the DSP System Toolbox Block
Support Table. You can identify blocks that use precompiled shared libraries
by checking the footnotes listed in the Code Generation Support column of
the table. All blocks that use shared libraries have the following footnote:

Host computer only. Excludes Real-Time Windows (RTWIN) target.

Simulink Coder provides functions to help you set up and manage the build
information for your models. For example, one of the “Build Information ”
functions that Simulink Coder provides is getNonBuildFiles. This function
allows you to identify the shared libraries required by blocks in your model. If
your model contains any blocks that use precompiled shared libraries, you can
install those libraries on the target system. The folder that you install the
shared libraries in must be on the system path. The target system does not
need to have MATLAB installed, but it does need to be supported by MATLAB.
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Highly Optimized Generated ANSI C Code
All DSP System Toolbox blocks generate highly optimized ANSI C code. This
C code is often suitable for embedded applications, and includes the following
optimizations:

• Function reuse (run-time libraries) — The generated code reuses
common algorithmic functions via calls to shared utility functions.
Shared utility functions are highly optimized ANSI/ISO C functions that
implement core algorithms such as FFT and convolution.

• Parameter reuse (Simulink Coder run-time parameters)— In many
cases, if there are multiple instances of a block that all have the same value
for a specific parameter, each block instance points to the same variable in
the generated code. This process reduces memory requirements.

• Blocks have parameters that affect code optimization — Various
blocks, such as the FFT and Sine Wave blocks, have parameters that
enable you to optimize the simulation for memory or for speed. These
optimizations also apply to code generation.

• Other optimizations — Use of contiguous input and output arrays,
reusable inputs, overwritable arrays, and inlined algorithms provide
smaller generated C code that is more efficient at run time.
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Code Generation from MATLAB

In this section...

“What is Code Generation from MATLAB?” on page 7-4

“Supported Functions” on page 7-5

What is Code Generation from MATLAB?
Code generation from MATLAB is a restricted subset of the MATLAB
language that provides optimizations for:

• Generating efficient, production-quality C/C++ code and MEX files for
deployment in desktop and embedded applications. For embedded targets,
the subset restricts MATLAB semantics to meet the memory and data type
requirements of the target environments.

• Accelerating fixed-point algorithms

For detailed information about MATLAB for code generation, refer to the
“Code Generation from MATLAB” and “MATLAB Coder” documentation.
Depending on which feature you wish to use, there are additional required
products. For a comprehensive list, see “Which Code Generation Feature
to Use”.

Code generation from MATLAB supports the Communications System
Toolbox functions listed in “Supported Functions” on page 7-5. You must
have the DSP System Toolbox software installed to use this feature. To
generate C code, you must have the MATLAB® Coder™ software. If you
have the Fixed-Point Toolbox, you can use fiaccel to generate MEX code
for fixed-point applications.

In order to use Communications System Toolbox you must have a Signal
Processing Toolbox license. There are a number of differences between the use
of Signal Processing Toolbox functions with code generation from MATLAB
and the use of these functions in the Signal Processing Toolbox software.
These differences are summarized in Specifying Inputs in Code Generation
for MATLAB and illustrated in Code Generation Examples.

To follow the examples in this documentation:

7-4



Code Generation from MATLAB®

• To generate C/C++ code with codegen, install the MATLAB Coder software,
the Signal Processing Toolbox, the DSP System Toolbox, and a C compiler.
For the Windows® platform, MATLAB supplies a default C compiler. Run
mex -setup at the MATLAB command prompt to set up the C compiler.

• Change to a folder where you have write permission.

Supported Functions
Code generation from MATLAB supports the generation of embeddable C code
for the following Communications System Toolbox functions:

• bi2de

• de2bi

• istrellis

• poly2trellis

• rcosfir

The generated C code meets the strict memory and data type requirements
of embedded target environments.
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Generating Code for Communications System Objects
The following System objects support code generation in MATLAB via the
MATLAB Coder product. See “Use System Objects for Code Generation from
MATLAB” for information on generating code.

Supported Communications System Toolbox System Objects

Object Description

Channels

comm.AWGNChannel Add white Gaussian noise to input signal

comm.BinarySymmetricChannel Introduce binary errors

Equalizers

comm.MLSEEqualizer Equalize using maximum likelihood sequence
estimation

Filters

comm.IntegrateAndDumpFilter Integrate discrete-time signal with periodic resets

Measurements

comm.EVM Measure error vector magnitude

comm.MER Measure modulation error ratio

Sources

comm.KasamiSequence Generate a Kasami sequence

comm.PNSequence Generate a pseudo-noise (PN) sequence

Error Detection and Correction – Convolutional Coding

comm.ConvolutionalEncoder Convolutionally encode binary data

comm.ViterbiDecoder Decode convolutionally encoded data using Viterbi
algorithm

Error Detection and Correction – Cyclic Redundancy Check Coding

comm.CRCDetector Detect errors in input data using cyclic redundancy
code
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Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.CRCGenerator Generate cyclic redundancy code bits and append to
input data

Interleavers – Block

comm.AlgebraicDeinterleaver Deinterleave input symbols using algebraically
derived permutation vector

comm.AlgebraicInterleaver Permute input symbols using an algebraically
derived permutation vector

comm.BlockDeinterleaver Deinterleave input symbols using permutation
vector

comm.BlockInterleaver Permute input symbols using a permutation vector

comm.MatrixDeinterleaver Deinterleave input symbols using permutation
matrix

comm.MatrixInterleaver Permute input symbols using permutation matrix

comm.MatrixHelicalScanDeinterleaver Deinterleave input symbols by filling a matrix along
diagonals

comm.MatrixHelicalScanInterleaver Permute input symbols by selecting matrix elements
along diagonals

Interleavers – Convolutional

comm.ConvolutionalDeinterleaver Restore ordering of symbols using shift registers

comm.ConvolutionalInterleaver Permute input symbols using shift registers

comm.HelicalDeinterleaver Restore ordering of symbols using a helical array

comm.HelicalInterleaver Permute input symbols using a helical array

comm.MultiplexedDeinterleaver Restore ordering of symbols using a set of shift
registers with specified delays

comm.MultiplexedInterleaver Permute input symbols using a set of shift registers
with specified delays

MIMO
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Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.OSTBCCombiner Combine inputs using orthogonal space-time block
code

comm.OSTBCEncoder Encode input message using orthogonal space-time
block code

Digital Baseband Modulation – Phase

comm.BPSKDemodulator Demodulate using binary PSK method

comm.BPSKModulator Modulate using binary PSK method

comm.DBPSKModulator Modulate using differential binary PSK method

comm.DPSKDemodulator Demodulate using M-ary DPSK method

comm.DPSKModulator Modulate using M-ary DPSK method

comm.DQPSKDemodulator Demodulate using differential quadrature PSK
method

comm.DQPSKModulator Modulate using differential quadrature PSK method

comm.DBPSKDemodulator Demodulate using M-ary DPSK method

comm.QPSKDemodulator Demodulate using quadrature PSK method

comm.QPSKModulator Modulate using quadrature PSK method

comm.PSKDemodulator Demodulate using M-ary PSK method

comm.PSKModulator Modulate using M-ary PSK method

comm.OQPSKDemodulator Demodulate offset quadrature PSK modulated data

comm.OQPSKModulator Modulate using offset quadrature PSK method

Digital Baseband Modulation – Amplitude

comm.GeneralQAMDemodulator Demodulate using arbitrary QAM constellation

comm.GeneralQAMModulator Modulate using arbitrary QAM constellation

comm.PAMDemodulator Demodulate using M-ary PAM method

comm.PAMModulator Modulate using M-ary PAM method

comm.RectangularQAMDemodulator Demodulate using rectangular QAM method
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Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.RectangularQAMModulator Modulate using rectangular QAM method

Digital Baseband Modulation – Frequency

comm.FSKDemodulator Demodulate using M-ary FSK method

comm.FSKModulator Modulate using M-ary FSK method

Digital Baseband Modulation – Trelllis Coded

comm.GeneralQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to arbitrary QAM constellation

comm.GeneralQAMTCMModulator Convolutionally encode binary data and map using
arbitrary QAM constellation

comm.PSKTCMDemodulator Demodulate convolutionally encoded data mapped
to M-ary PSK constellation

comm.PSKTCMModulator Convolutionally encode binary data and map using
M-ary PSK constellation

comm.RectangularQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to rectangular QAM constellation

comm.RectangularQAMTCMModulator Convolutionally encode binary data and map using
rectangular QAM constellation

Digital Baseband Modulation – Continuous Phase

comm.CPFSKDemodulator Demodulate using CPFSK method and Viterbi
algorithm

comm.CPFSKModulator Modulate using CPFSK method

comm.CPMDemodulator Demodulate using CPM method and Viterbi
algorithm

comm.CPMModulator Modulate using CPM method

comm.GMSKDemodulator Demodulate using GMSK method and the Viterbi
algorithm

comm.GMSKModulator Modulate using GMSK method
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Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.MSKDemodulator Demodulate using MSK method and the Viterbi
algorithm

comm.MSKModulator Modulate using MSK method

RF Impairments

comm.PhaseFrequencyOffset Apply phase and frequency offsets to input signal

Synchronization – Timing Phase

comm.EarlyLateGateTimingSynchronizer Recover symbol timing phase using early-late gate
method

comm.GardnerTimingSynchronizer Recover symbol timing phase using Gardner’s
method

comm.GMSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MuellerMullerTimingSynchronizer Recover symbol timing phase using Mueller-Muller
method

Converters

comm.BitToInteger Convert vector of bits to vector of integers

comm.IntegerToBit Convert vector of integers to vector of bits

Sequence Operators

comm.Descrambler Descramble input signal

comm.Scrambler Scramble input signal
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A Examples

Getting Started
“Export Data to MATLAB” on page 1-3
“Carrier Phase Recovery” on page 3-271

Communications Sinks
“View a Sinusoid” on page 1-17
“View a Modulated Signal” on page 1-19

Computing Delays
“ADSL Demo Model” on page 2-8
“Punctured Coding Model” on page 2-11
“Use the Find Delay and Align Signals Blocks” on page 2-15

Source Coding
“Example: Optimizing Quantization Parameters” on page 3-4
“Example: DPCM Encoding and Decoding” on page 3-6
“Example: Comparing Optimized and Nonoptimized DPCM Parameters”
on page 3-8
“Example: µ-Law Compander” on page 3-9
“Create and Decode a Huffman Code Using MATLAB” on page 3-12
“Create and Decode an Arithmetic Code Using MATLAB” on page 3-13
“Scalar Quantization Example 1” on page 3-14
“Scalar Quantization Example 2” on page 3-14

Block Codes
“Example: Reed-Solomon Code in Integer Format” on page 3-26
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Convolutional Codes

“Create a Hamming Code in Binary Format Using Simulink” on page 3-85

Convolutional Codes
“Implement Soft-Decision Decoding Using Simulink” on page 3-51
“Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 3-59
“Soft-Decision Decoding” on page 3-65
“Tailbiting Encoding Using Feedback Encoders” on page 3-71

Interleaving
“Improve Error Rate Using Block Interleaving in MATLAB” on page 3-170
“Improve Error Rate Using Block Interleaving in Simulink” on page 3-171
“Effect of Delays on Recovery of Convolutionally Interleaved Data Using
MATLAB” on page 3-178
“Convolutional Interleaving and Deinterleaving Using a Sequence of
Consecutive Integers in MATLAB” on page 3-181
“Convolutional Interleaving and Deinterleaving Using a Sequence of
Consecutive Integers in Simulink” on page 3-184

Digital Modulation
“Delays from Demodulation ” on page 3-202
“Rectangular QAM Modulation and Scatter Diagram” on page 3-208
“Phase Tree for Continuous Phase Modulation” on page 3-213
“Example: Delays from Demodulation” on page 3-225

Equalizers
“Example of Basic Modulation and Demodulation” on page 3-221
“Equalize a Signal Using MATLAB” on page 3-284
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“Implement LMS Linear Equalizer Using Simulink” on page 3-288
“Equalize Using a Training Sequence in MATLAB” on page 3-298

Modulation
“Analog Modulation with Additive White Gaussian Noise (AWGN) Using
MATLAB” on page 3-230
“Plot Signal Constellation” on page 6-34
“Plot Signal Constellation” on page 6-34

Analog Modulation
“Varying Filter’s Cutoff Frequency Using Simulink” on page 3-232

Special Filters
“Pulse Shaping Using a Raised Cosine Filter” on page 3-238
“Compensate for Group Delays in Data Analysis Using MATLAB” on
page 3-244
“Example: Raised Cosine Filter Delays” on page 3-251
“Using rcosine and rcosflt to Implement Square-Root Raised Cosine
Filters” on page 3-252

Communications Filters
“Design Raised Cosine Filters in Simulink” on page 3-256

Synchronization and Receivers
“Squaring Timing Phase Recovery Example” on page 3-268
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MIMO

MIMO
“OSTBC Over 3x2 Rayleigh Fading Channel” on page 3-323

Channels
“Power of a Faded Signal” on page 4-25
“Compare Empirical Results to Theoretical Results” on page 4-26
“Work with Delays” on page 4-28
“Filter Using a Loop” on page 4-29
“Quasi-Static Channel Modeling” on page 4-46

RF Impairments
“Illustrate RF Impairments That Distort a Signal” on page 4-51
“Illustrate How RF Impairments Blocks Distort a Signal” on page 6-40
“Illustrate How RF Impairments Blocks Distort a Signal” on page 6-40

Performance Evaluation
“Example: Using the Theoretical Tab in BERTool” on page 5-31
“Example: Using the Semianalytic Tab in BERTool” on page 5-39
“View Signals Using Scatter Plots” on page 6-22

Simulating Communication Systems
“Example: Using a MATLAB Simulation with BERTool” on page 5-44
“Template for a Simulation Function” on page 5-52
“Example: Prepare a Simulation Function for Use with BERTool” on page
5-54
“Example: Using a Simulink Model with BERTool” on page 5-59
“Example: Prepare a Model for Use with BERTool” on page 5-66
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Measuring Modulator Accuracy
“Measuring Modulator Accuracy” on page 5-117
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using polynomial description 3-41

sample code 3-44
using trellis description 3-45

convolutional interleavers 3-174
delays 3-176
sample code 3-181
supported types 3-174

correction vector 3-81
CPFSK carrier phase recovery 3-272
CPM carrier phase recovery 3-272
cyclic coding 3-83

generator polynomial 3-80
sample code

compared to generic linear coding 3-84

D
decimal format 3-76
decision timing

and eye diagrams 1-16
and scatter diagrams 1-16

decision-feedback equalizers 3-284
decoding tables 3-81
delays

adaptive equalizers 3-304
convolutional coding 3-59

example model 3-54 3-69
convolutional interleavers 3-176
digital modulation 3-201 3-224
fading channels 4-28
filter blocks 3-243
interleaving 3-177
MLSE equalizers 3-314
serial-signal channel coding 3-23

delta modulation 3-6
sample code 3-6
See also differential pulse code modulation

demodulation 3-188 3-228
determinants in Galois fields

even number of field elements 3-134
diagrams

example 1-17
eye 1-16
scatter 1-16

differential pulse code modulation (DPCM) 3-5
optimizing parameters 3-7

sample code 3-8
sample code 3-6

digital signals
representing 3-194

discrete Fourier transforms
over Galois fields 3-140

distortion
from DPCM 3-7
from quantization 3-4

division in Galois fields
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even number of field elements 3-128
odd number of field elements 3-159

Doppler objects
creating 4-17
duplicating 4-17
using within channel objects 4-18
viewing and changing parameters 4-17

Doppler shifts 4-6
DPCM 3-5

optimizing parameters 3-7
sample code 3-8

sample code 3-6

E
early-late gate timing recovery 3-266
Eb/No 4-2
equalizer blocks

decision-directed mode 3-303
example 3-288

equalizer objects 3-291
copying 3-295
creating 3-294
properties 3-296

linked 3-296
specifying algorithm 3-292
using 3-298

equalizers 3-282
adaptive algorithms 3-292
decision-directed mode 3-302
decision-feedback 3-284
delays 3-304
example model 3-288
fractionally spaced 3-287
in loop 3-306
MLSE 3-319
procedure 3-283
reference tap 3-304
sample code

basic procedure 3-284

in loop 3-306
training mode 3-299

supported types 3-282
symbol-spaced 3-285
training mode 3-298

equalizers, MLSE. See MLSE equalizers
error integers 1-9
error patterns 1-10
Error Rate Test Console 5-77
error rates

analyzing 5-25
MATLAB simulation 5-43
semianalytic

BERTool GUI 5-38
Simulink simulation 5-58
theoretical

BERTool GUI 5-30
error-correction capability

Hamming codes 3-81
of Hamming codes 3-29
of Reed-Solomon codes 3-31

errors
displaying in a scope 3-91

Es/No 4-2
expanders 3-9

sample code 3-9
exponential format in Galois fields

odd number of field elements 3-151
exponentiation in Galois fields

even number of field elements 3-129
eye diagrams 1-16

example 1-17

F
factorization

over Galois fields 3-136
faded signals 4-25
fading channels 4-6

compensation for 4-9
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delays 4-28
in loop 4-24
realistic modeling parameters 4-22
sample code 4-25
specifying the Doppler spectrum

linked 4-16
feedback connection polynomials 3-43
feedback methods 3-262

assumptions 3-265
feedforward methods

carrier phase recovery
example 3-272

timing phase recovery 3-261
example 3-268

fields, finite
even number of elements 3-114
odd number of elements 3-150

filters
fading channels 4-12
Galois fields

even number of field elements 3-138
Hilbert transform 3-245
post-demodulation 3-231
raised cosine 3-247

designing 3-253
designing and applying 3-248

raised cosine blocks 3-255
square-root raised cosine 3-252
square-root raised cosine blocks 3-255

Find Delay block
ADSL model 2-15

finite fields
even number of elements 3-114
odd number of elements 3-150

flat fading 4-6
format of Galois field elements

converting to exponential format
even number of field elements 3-130
odd number of field elements 3-158

converting to polynomial format

even number of field elements 3-129
odd number of field elements 3-155

even number of field elements 3-116
odd number of field elements 3-151

Fourier transforms
over Galois fields 3-140

fractionally spaced equalizers 3-287
frame attribute 2-4
frame-based signals

definition 2-4
frames

displaying sizes of 3-90
frequency-flat fading 4-6
frequency-selective fading 4-6
full matrix signal

definition 1-2 2-2
function reuse 7-3

G
Galois arrays 3-116

creating 3-116
manipulating variables 3-146
meaning of integers in 3-120

Galois fields
even number of elements 3-114
odd number of elements 3-150

Gardner timing recovery 3-266
Gaussian channel 4-2
Gaussian noise

generating 1-12
general multiplexed interleaver 3-174
generator matrices 3-29

converting to parity-check matrices 3-39
sample code 3-80

finding 3-38
representing 3-78

generator polynomials
finding 3-36 3-109
for convolutional code 3-42
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representing 3-80
GMSK carrier phase recovery 3-272
GMSK timing recovery 3-267
group delay 3-242

H
Hamming code example 3-86
Hamming codes 3-29
Hamming coding 3-85

sample code 3-81
single-error-correction 3-81

hard-decision decoding 3-49
helical interleaver 3-174
helical scan interleavers 3-168
Hilbert filters

designing 3-245
Huffman codes 3-10

dictionary 3-11
sample code 3-12

I
integer format for messages and codewords 3-24
integrate-and-dump operation 3-212
interleavers 3-168

block 3-168
sample code 3-170
supported methods 3-168

convolutional 3-174
delays 3-176
sample code 3-181
supported types 3-174

interleaving delays 3-177
inverses in Galois fields

even number of field elements 3-134
irreducible polynomials 3-163

J
Jakes Doppler spectrum 4-6

K
K-factor for Rician channels 4-23

L
labeling blocks 3-89
line-of-sight paths 4-6
linear algebra in Galois fields

even number of field elements 3-134
linear block coding 3-82

sample code 3-83
linear predictors 3-6

optimizing 3-7
sample code 3-8

representing 3-6
list of elements of Galois fields

even number of field elements 3-119
odd number of field elements 3-153

generating 3-157
Lloyd algorithm 3-4
LMS equalizers

example 3-288
logarithms in Galois fields

even number of field elements 3-130
logical operations in Galois fields

even number of field elements 3-130
lowpass equivalent method 3-193

M
matrix interleavers 3-168
matrix manipulation in Galois fields

even number of field elements 3-133
messages

definition 3-22
representing 3-22

for coding functions 3-73
minimal polynomials in Galois fields

even number of field elements 3-145
odd number of field elements 3-163
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MLSE equalizers 3-311 3-319
continuous operation 3-313
delays 3-314
preambles and postambles 3-317
sample code

continuous operation 3-314
preamble 3-318

modem objects 3-215
modulation 3-188

analog 3-228
sample code 3-230

definition 3-228
delta 3-6

sample code 3-6
See also differential pulse code

modulation
supported methods 3-189
terminology 3-194

Modulation library 3-228
MSK carrier phase recovery 3-272
MSK timing recovery 3-267
mu-law companders 3-9

sample code 3-9
Mueller-Muller timing recovery 3-267
multipath channels 4-6

compensation for 4-9
delays 4-28
in loop 4-24
realistic modeling parameters 4-22
sample code 4-25

multipath fading channels
simulation 4-9

multiple roots over Galois fields
even number of field elements 3-143

multiplication in Galois fields
even number of field elements 3-127
odd number of field elements 3-159

N
nonbinary codes 3-21

Reed-Solomon 3-31
noncausality 3-242
Nyquist sampling theorem 3-194

O
octal

conversion from binary 3-43
one-dimensional arrays

definition 1-2 2-2
optimization

code generation 7-3
optimizing

DPCM parameters 3-7
sample code 3-8

quantization parameters 3-4
sample code 3-4

order of digits in binary numbers 3-24 3-77

P
parameter reuse 7-3
parity-check matrices

finding 3-38
representing 3-78

partitions
optimizing 3-4

for DPCM 3-7
sample code 3-4
sample code for DPCM 3-8

representing 3-2
passband modulation 3-193
passband simulation 3-229
pi/4 DQPSK modulation 3-207
PLLs 3-260
polynomial description of encoders 3-41

sample code 3-44
polynomial format in Galois fields
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even number of field elements 3-120
odd number of field elements 3-152

polynomials
displaying formatted 3-162
generator 3-36 3-109

polynomials over Galois fields
arithmetic

even number of field elements 3-142
odd number of field elements 3-163

binary coefficients 3-144
evaluating

even number of field elements 3-142
even number of field elements 3-141
irreducible 3-163
minimal

even number of field elements 3-145
odd number of field elements 3-163

odd number of field elements 3-161
primitive. See primitive polynomials
roots

even number of field elements 3-143
odd number of field elements 3-164

postambles 3-317
preambles 3-317

sample code 3-318
predictive error 3-6
predictive order 3-6
predictive quantization 3-5

optimizing parameters 3-7
sample code 3-8

sample code 3-6
predictors 3-6

linear 3-6
optimizing 3-7

sample code 3-8
representing 3-6

primitive elements 3-115
representing 3-121

primitive polynomials
consistent use 3-154

default
even number of field elements 3-123
odd number of field elements 3-154

definition 3-116
even number of field elements 3-121
odd number of field elements 3-163

PSK carrier phase recovery 3-272
example 3-272

pulse shaping
rectangular 3-212
sample code 3-238

punctured convolutional code 3-63

Q
QAM carrier phase recovery 3-272
quantization

coding 3-3
DPCM parameters, optimizing 3-7

sample code 3-8
optimizing parameters 3-4

sample code 3-4
predictive 3-5

sample code 3-6
sample code 3-14

quasi-static channel modeling 4-46

R
raised cosine filters

blocks 3-255
designing and applying 3-248
designing but not applying 3-253
filtering with 3-247
sample code 3-238
square-root 3-252
square-root blocks 3-255

random
bipolar symbols 1-8
bits 1-9
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in error patterns 1-10
integers 1-9
symbols 1-8

random interleavers 3-168
rank

in Galois fields
even number of field elements 3-135

Rayleigh fading channels 4-6
compensation for 4-9
delays 4-28
in loop 4-24
realistic modeling parameters 4-22
sample code 4-25

rectangular pulse shaping 3-212
Reed-Solomon coding

generator polynomial 3-80
references

convolutional coding 3-73
error-control coding 3-39
Galois fields 3-149
modulation/demodulation 3-226

repeatability
fading channels 4-24

representing
analog signals 3-229
codewords 3-22 3-73
decoding tables 3-81
digital signals 3-194
Galois field elements

even number of field elements 3-116
odd number of field elements 3-151

Galois fields
even number of field elements 3-119
odd number of field elements 3-153

generator matrices 3-29 3-78
generator polynomials 3-80
messages 3-22

for coding functions 3-73
parity-check matrices 3-78
polynomials over Galois fields

even number of field elements 3-141
odd number of field elements 3-162

predictors 3-6
truth tables 3-29

reuse of
functions 7-3
parameters 7-3

Rician fading channels 4-6
compensation for 4-9
delays 4-28
in loop 4-24
realistic modeling parameters 4-22
sample code 4-46

roots
over Galois fields

binary polynomials 3-144
even number of field elements 3-143
odd number of field elements 3-164

row vector signals 1-2 2-2

S
sample-based signals

definition 2-4
sampling rate 3-194

relative to carrier frequency 3-194
scalar quantization

coding 3-3
sample code 3-14

scalar signals
definition 1-2 2-2

scatter diagrams 1-16
example 1-17

scatter plots 6-22
sample code 6-22

sending data to MATLAB workspace 1-3
signal constellations

decimal annotations 6-11 6-36
Gray-coded 6-12 6-37
plotting procedure 6-10 6-34
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PSK 6-10 6-34
simplifying formats of Galois field elements

exponential
odd number of field elements 3-158

polynomial
odd number of field elements 3-155

simulation functions for BERTool 5-50
Simulink Coder

code generation 7-2
Simulink models for BERTool 5-63
SNR 4-2
soft-decision decoding 3-49 3-51 3-65

sample code 3-50
solving linear equations over Galois fields 3-136
squaring timing recovery 3-265

example 3-268
subtraction in Galois fields

even number of field elements 3-126
odd number of field elements 3-159

symbol-spaced equalizers 3-285
synchronization 3-260

carrier phase recovery 3-271
example 3-272
supported algorithms 3-272

timing phase recovery 3-260
assumptions 3-265
example 3-268
feedback methods 3-262
feedforward method 3-261
restarting 3-264
suitability of algorithms 3-264
supported algorithms 3-261

Synchronization library 3-260
syndrome 3-81

T
test console

analyzing 5-77
timing phase recovery 3-260

example 3-268
feedback methods 3-262

assumptions 3-265
feedforward method 3-261
restarting 3-264
suitability of algorithms 3-264
supported algorithms 3-261

timing, decision
and eye diagrams 1-16
and scatter diagrams 1-16

training data
for optimizing DPCM quantization

parameters 3-7
for optimizing quantization parameters 3-4

trellis
description of encoder 3-45
structure 3-46

sample code 3-47
trellis-coded modulation 3-189
truncating polynomials over Galois fields

odd number of field elements 3-162
truth tables 3-29

V
vector signals

definition 1-2 2-2

W
white Gaussian noise

generating 1-12
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